高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶胶-凝胶膜光学表面激光清洗工艺研究

郭乃豪 王静轩 向霞

引用本文:
Citation:

溶胶-凝胶膜光学表面激光清洗工艺研究

    作者简介: 郭乃豪(1994-),男,硕士研究生,现主要从事先进光学加工技术的研究.
    通讯作者: 向霞, xiaxiang@uestc.edu.cn
  • 基金项目:

    国家自然科学基金资助项目 U1830204

  • 中图分类号: TN249

Study on laser cleaning process of sol-gel film optical surface

    Corresponding author: XIANG Xia, xiaxiang@uestc.edu.cn
  • CLC number: TN249

  • 摘要: 为了解决光学元件表面的颗粒污染问题,在单发次激光干式清洗的基础上,提出了气流置换系统辅助的激光清洗方法,使用波长为355nm的Nd:YAG激光器,针对镀溶胶-凝胶SiO2薄膜熔石英光学表面粒径为1μm~50μm的典型SiO2颗粒污染物,进行了理论分析和清洗实验,取得了可用于激光清洗的工艺参量。结果表明,对于镀溶胶-凝胶膜熔石英样品的单发激光干式清洗,最佳激光能量密度为2.29J/cm2,与未镀膜石英的激光清洗工艺参量存在一定差异;在最佳工艺参量下,单发次激光清洗对于粒径1μm以上的SiO2颗粒清洗效果明显,移除率可达82.96%;当污染密度过高时会导致清洗效果的减弱及对基底的损伤,而气流置换系统辅助的激光清洗方法可进一步增强对光学表面颗粒污染的去除效果。该研究对大型高功率固体激光装置中的光学元件在线清洗及清洗装备的设计具有重要的研究意义与实用价值。
  • Figure 1.  Schematic diagram of the proposed system

    Figure 2.  Effect of different laser densities on cleaning effeciency of low contamination density samples

    a—uncoating fused silica b—coating fused silica

    Figure 3.  Relationship between laser fluence and removal rate of high contamination coating fused silica

    Figure 4.  Dark field of samples before and after laser cleaning under optimum laser energy density

    a, b—low contamination uncoating fused silica c, d—low contamination coating fused silica e, f—high contamination coating fused silica

    Figure 5.  Residual polluted particles after laser cleaning

    a—with single laser cleaning b—with airflow displacement system

    Figure 6.  Dark field after laser cleaning under optimum laser energy density

    a—with single laser cleaning b—with airflow displacement system

  • [1]

    ZHANG C L, LI X B, WANG Z G, et al. Laser cleaning techniques for removing surface particulate contaminants on sol-gel SiO2 films[J]. Chinese Physics Letters, 2011, 28(7): 074205. doi: 10.1088/0256-307X/28/7/074205
    [2]

    ZHANG Ch L, YAO Ch M. Particulate contaminants removal on sol-gel film using 355nm pulsed-laser[J]. Scientia Sinica Technologica, 2016, 46(9): 926-930(in Chinese). doi: 10.1360/N092016-00111
    [3]

    LI H, BAI Y, YAN L H, et al. Stability of sol-gel silica coatings under ISO class 5 atmosphere condition[J]. High Power Laser and Particle Beams, 2018, 30(5): 052001(in Chinese). 
    [4]

    MIAO X X, CHENG X F, WANG H B, et al. Experiment on cleaning side of large-aperture optics in high power laser system[J]. High Power Laser and Particle Beams, 2013, 25(4): 890-894(in Chinese). doi: 10.3788/HPLPB20132504.0890
    [5]

    XU Sh Zh, DOU H Q, HAN F M, et al. Laser cleaning of particulate contaminants on K9 glass surface[J]. Research and Exploration in Laboratory, 2017, 36(6): 5-8(in Chinese).
    [6]

    KIM T, LEE J M, CHO S H, et al. Acoustic emission monitoring during laser shock cleaning of silicon wafers[J].Optics & Lasers in Engineering, 2005, 43(9):1010-1020. 
    [7]

    LUO J F, SONG Sh J, WANG P Q, et al. Study on removal mechanism of micro-/nano-particles on silicon surface by laser plasma[J]. Laser Technology, 2018, 42(4): 567-571(in Chinese). 
    [8]

    LIU H, MIAO X X, YANG K, et al. Atmosphere pressure plasma cleaning of grease contamination on sol-gel SiO2 coating[J].High Power Laser and Particle Beams, 2015, 27(11): 112008(in Chinese). 
    [9]

    ALSHAER A W, LI L, MISTRY A. The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture[J].Optics & Laser Technology, 2014, 64(4): 162-171. 
    [10]

    XING H N, RAN H L, ZHAO H F, et al. Development and application of laser cleaning technology[J]. Cleaning World, 2018, 34(5): 23-31(in Chinese).
    [11]

    ZHANG Z H, YU X Ch, WANG Y, et al. Experimental study about cleaning of tire molds with pulse YAG laser[J]. Laser Technology, 2018, 42(1): 127-130(in Chinese). 
    [12]

    LIU H, YI R, LI Y X. Application of different wavelength laser cleaning technology in archaeological metal objects cleaning[J]. Laser Journal, 2019, 40(4): 149-153(in Chinese). 
    [13]

    YUE L Y, WANG Z B, LI L. Material morphological characteristics in laser ablation of alpha case form titanium alloy[J]. Applied Surface Science, 2012, 258(20): 8065-8071. doi: 10.1016/j.apsusc.2012.04.173
    [14]

    ZHOU C, WANG G, CHEN G Y, et al. Experimental study on picosecond pulse laser cleaning of aluminun alloy[J]. Applied Laser, 2018, 38(2): 256-262(in Chinese).
    [15]

    VEREECKE G, HEYNS M M, ROHR E. Influence of beam incidence angle on dry laser cleaning of surface particles[J]. Applied Surface Science, 2000, 157(1): 67-73. 
    [16]

    JIN S, WANG J X, YUAN X D, et al. Laser paint removal technology for aircraft metal skin and composite materials[J]. High Energy Beam Machining, 2018, 61(17): 63-70(in Chinese). 
    [17]

    CHEN Y M, ZHOU L Z, YAN F, et al. Mechanism and quality evaluation of laser cleaning of aluminum alloy[J]. Chinese Journal of Lasers, 2017, 44(12): 1202005(in Chinese). doi: 10.3788/CJL201744.1202005
    [18]

    TONG Y Q, ZHANG Y K, YAO H B, et al. Plasma spectral analysis of laser cleaning process in air[J]. Spectroscopy and Spectral Analysis, 2011, 31(9): 2542-2545(in Chinese). 
    [19]

    LEE J M, WATKINS K G. Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves[J]. Journal of Applied Physics, 2001, 89(11): 6496-6500. doi: 10.1063/1.1353562
    [20]

    TIAN W Ch, JIA J Y, CHEN G Y. Digital density in hamaker micro continuum medium principle and hamaker constant[J].Chinese Journal of Computational Physics, 2006, 23(3): 366-370(in Chinese). 
    [21]

    WANG H P, JING J, BLUM L. Interaction energy between spherical colloidal particles——the improvement on Derjaguin method[J]. Chemical Journal of Chinese Universities, 1994, 15(10):1538-1542(in Chinese).
  • [1] 黄进吕海兵王海军赵松楠王韬蒋晓东袁晓东郑万国 . 利用紫外激光处理提高熔石英损伤阈值的研究. 激光技术, 2009, 33(3): 297-299,313.
    [2] 叶亚云袁晓东向霞王海军晏良宏陈猛吕海兵贺少勃 . 激光冲击波清洗K9玻璃表面SiO2颗粒的研究. 激光技术, 2011, 35(2): 245-248. doi: 10.3969/j.issn.1001-3806.2011.02.028
    [3] 赵麒白忠臣周骅陆安江张正平刘桥 . 拉盖尔-高斯光束作用下熔石英温度及应力研究. 激光技术, 2018, 42(1): 121-126. doi: 10.7510/jgjs.issn.1001-3806.2018.01.024
    [4] 苗心向袁晓东程晓锋贺少勃郑万国 . 表面污染物诱导熔石英损伤的热力学数值模拟. 激光技术, 2011, 35(2): 285-288. doi: 10.3969/j.issn.1001-3806.2011.02.039
    [5] 吴勇华任晓晨刘皓贤闫永君康献民 . 激光参量对碳钢表面清洗质量的影响. 激光技术, 2021, 45(4): 500-506. doi: 10.7510/jgjs.issn.1001-3806.2021.04.014
    [6] 张自豪余晓畅王英陈培锋 . 脉冲YAG激光清洗轮胎模具的实验研究. 激光技术, 2018, 42(1): 127-130. doi: 10.7510/jgjs.issn.1001-3806.2018.01.025
    [7] 李浩宇杨峰郭嘉伟安国斐谭丽娟蔡和韩聚洪王浟 . 激光清洗的发展现状与前景. 激光技术, 2021, 45(5): 654-661. doi: 10.7510/jgjs.issn.1001-3806.2021.05.020
    [8] 任茂鑫关珮雯徐鹏邓金鱼刘赟吴欣烨王劭菁季怡萍 . MOPA脉冲光纤激光清洗电力绝缘子的工艺探索. 激光技术, 2022, 46(5): 648-652. doi: 10.7510/jgjs.issn.1001-3806.2022.05.011
    [9] 陈菊芳张永康孔德军叶霞 . 短脉冲激光清洗细微颗粒的研究进展. 激光技术, 2007, 31(3): 301-305.
    [10] 王泽敏曾晓雁黄维玲 . 激光清洗工艺的发展现状与展望. 激光技术, 2000, 24(2): 68-73.
    [11] 陈菊芳张永康许仁军顾永玉张兴权 . 轴快流CO2激光脱漆的实验研究. 激光技术, 2008, 32(1): 64-66,70.
    [12] 陈赟黄海鹏叶德俊郝本田 . 基于贝叶斯判别的激光除漆声学监测方法研究. 激光技术, 2022, 46(2): 248-253. doi: 10.7510/jgjs.issn.1001-3806.2022.02.016
    [13] 黄晚晴冯斌李富全韩伟王芳郑万国 . 熔石英元件非吸热性杂质对后表面光场的调制. 激光技术, 2010, 34(3): 417-421. doi: 10.3969/j.issn.1001-3806.2010.03.037
    [14] 陈菊芳陈国炎孙凌燕王江涛李兴成 . H13钢表面激光熔覆层稀释率及强化效果研究. 激光技术, 2017, 41(4): 596-601. doi: 10.7510/jgjs.issn.1001-3806.2017.04.028
    [15] 李爱魁王泽敏刘家骏曾晓雁 . SiO2-TiO2溶胶-凝胶薄膜的激光致密化研究. 激光技术, 2008, 32(4): 343-345,349.
    [16] 高亚丽王存山张梅熊党生 . 镁合金激光表面熔凝技术分析. 激光技术, 2009, 33(4): 362-365. doi: 10.3969/j.issn.1001-3806.2009.04.008
    [17] 袁明权凌宏芝彭勃 . 石英玻璃薄板激光精密切割技术. 激光技术, 2006, 30(4): 406-408.
    [18] 杨淑连 . 基于激光光热位移技术纳米材料热扩散率的测量. 激光技术, 2007, 31(1): 29-30.
    [19] 李文兵李祥友曾晓雁 . 激光微细熔覆电阻浆料直写电阻技术初步研究. 激光技术, 2005, 29(2): 123-125,134.
    [20] 陈菊芳王江涛周金宇 . 镁合金表面激光熔覆技术的研究进展. 激光技术, 2015, 39(5): 631-636. doi: 10.7510/jgjs.issn.1001-3806.2015.05.010
  • 加载中
图(6)
计量
  • 文章访问数:  6537
  • HTML全文浏览量:  5009
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-15
  • 录用日期:  2019-05-27
  • 刊出日期:  2020-03-25

溶胶-凝胶膜光学表面激光清洗工艺研究

    通讯作者: 向霞, xiaxiang@uestc.edu.cn
    作者简介: 郭乃豪(1994-),男,硕士研究生,现主要从事先进光学加工技术的研究
  • 1. 电子科技大学 物理学院, 成都 610054
  • 2. 中国工程物理研究院 激光聚变研究中心, 绵阳 621900
基金项目:  国家自然科学基金资助项目 U1830204

摘要: 为了解决光学元件表面的颗粒污染问题,在单发次激光干式清洗的基础上,提出了气流置换系统辅助的激光清洗方法,使用波长为355nm的Nd:YAG激光器,针对镀溶胶-凝胶SiO2薄膜熔石英光学表面粒径为1μm~50μm的典型SiO2颗粒污染物,进行了理论分析和清洗实验,取得了可用于激光清洗的工艺参量。结果表明,对于镀溶胶-凝胶膜熔石英样品的单发激光干式清洗,最佳激光能量密度为2.29J/cm2,与未镀膜石英的激光清洗工艺参量存在一定差异;在最佳工艺参量下,单发次激光清洗对于粒径1μm以上的SiO2颗粒清洗效果明显,移除率可达82.96%;当污染密度过高时会导致清洗效果的减弱及对基底的损伤,而气流置换系统辅助的激光清洗方法可进一步增强对光学表面颗粒污染的去除效果。该研究对大型高功率固体激光装置中的光学元件在线清洗及清洗装备的设计具有重要的研究意义与实用价值。

English Abstract

    • 溶胶-凝胶SiO2 薄膜广泛应用于强激光系统作为减反射薄膜,但溶胶-凝胶薄膜具有疏松多孔的纳米结构,孔内充满丰富的悬挂键,因此很容易吸纳各类污染物[1-3]。在大型高功率固体激光装置中,污染物主要成分为SiO2颗粒[4]。光学元件在受到其污染后,不仅降低了光学元件的损伤阈值,还会严重影响激光的最终输出通量[5]。激光清洗作为一种新型清洗技术,可在不损伤基底的情况下,有效清洗基底表面的微米及亚微米尺寸的污染颗粒[6-7],并可广泛地应用到油脂、薄膜等各类污染物以及各种材料的清洗[8-9]。激光清洗具有可控性好、清洗效率高、设备寿命长、运行成本低、安全性强、非接触性等诸多优点[10],在电子线路、除锈、脱漆、轮胎模具和文物保护等领域都有广泛的应用前景和市场[11-14]

      目前,国内外激光清洗技术发展迅速,国外相关机构如新加坡国立大学,系统性开展了干式激光清洗的机理研究,提出热致脱附模型,并基于模型开展多种表面多种附着物的精密去除控制技术研究,处于国际领先地位[15]。国内有中国工程物理研究院激光聚变研究中心、华中科技大学、江苏大学以及大批科研单位院所在多类材料激光清洗机理、工艺研究、检测技术、装备研发等方向进行了大量的研究工作与探索[16-18]

      激光清洗是复杂的光物理化学过程,多场耦合作用机理复杂,仍缺乏系统的激光清洗机理与工艺研究,国内外在该方面均处于蓬勃发展阶段[19]。本文中通过对镀溶胶-凝胶SiO2薄膜的熔石英光学元件进行激光清洗工艺研究,获得了影响激光清洗效果的关键因素,掌握了激光清洗对SiO2颗粒污染物的相关清洗工艺参量,提出了气流置换系统辅助激光清洗的方法。

    • 对于粒径小于50μm吸附于基底表面的干燥颗粒,可近似认为颗粒的吸附力为范德华力。颗粒的吸附力还会使颗粒产生形变,从而导致颗粒与基底表面之间存在接触面,根据Hamaker理论[20],对于上述SiO2球状颗粒,其吸附力可表示为:

      $ |F|=\left|F_{1}+F_{2}\right|=\frac{A r}{6 h^{2}}\left(1+\frac{r_{\mathrm{c}}^{2}}{r h}\right) $

      (1)

      式中,F1, F2分别表示未发生形变的范德华力与形变所引起的范德华力, A为Hamaker常数,r为颗粒的半径,h为颗粒与表面之间的距离,rc为形变导致的颗粒与基底表面的接触半径。根据DERJAGUIN的理论[21],颗粒半径与接触半径之间的关系有:

      $ r_{\mathrm{c}}^{3}=\frac{A r^{2}}{8 h^{2}}\left(\frac{1-\sigma_{1}^{2}}{E_{1}}+\frac{1-\sigma_{2}^{2}}{E_{2}}\right) $

      (2)

      式中,σ1E1表示颗粒的泊松系数和杨氏模量,σ2E2表示基底的泊松系数和杨氏模量。

    • 干式激光清洗的主要原理是利用热膨胀机理,激光直接照射在待清洗物基底和表面颗粒上,光能转换为热能,造成基底热膨胀、颗粒物自身热膨胀或两者同时吸收热膨胀,产生位置变化Δz,从而产生加速度使颗粒脱离基底。这3种方法原理相似,清洗模型基本相同,因此以普适性较强的基底膨胀模型为例,根据能量转换关系以及基底的1维温度场分布可得到:

      $ \left(1-R_{\rm s}\right) \int_{0}^{\infty} I\left(t_{1}\right) \mathrm{d} t_{1}=c \rho \int_{0}^{\infty} T(z, t) \mathrm{d} z $

      (3)

      式中,I(t1)为激光能量,T(z, t)为基底的1维温度场分布,c为基底的比热容,ρ为基底的密度,Rs为表面的反射率,将激光器产生的高斯型脉冲的脉冲形状等参量代入,可得基底的位移的表达式:

      $ {z_{\rm{s}}}(t) = \frac{{{\alpha _T}\mathit{\Phi }\left( {1 - {R_{\rm{s}}}} \right)}}{{c\rho }}\left[ {1 - \left( {1 + \frac{t}{\tau }} \right){{\rm{e}}^{ - \frac{1}{\tau }}}} \right] $

      (4)

      式中,αT为基底材料的热膨胀系数,Φ为激光通量, τ为激光的脉宽, t是时间变量。基于上述公式即可得基底与颗粒的位移速度与加速度。基底的加速度为:

      $ a = \frac{{{\alpha _T}\mathit{\Phi }\left( {1 - {R_{\rm{s}}}} \right)}}{{c\rho }}\frac{{{{\rm{e}}^{ - \frac{t}{\tau }}}}}{{{\tau ^2}}}\left( {1 - \frac{t}{\tau }} \right) $

      (5)

      颗粒的移除条件可表述为在热膨胀很短的时间内,产生的颗粒的动能与弹性势能克服吸附力所做的功,将此过程化简、近似,可得颗粒移除过程的简化式:

      $ \frac{4}{3} \pi r^{3} \frac{\rho_{0} v^{2}}{2} \geqslant \frac{A r}{6 h} $

      (6)

      式中, ρ0为颗粒的密度, v是颗粒的速度。

      以实验中所用数据为例进行计算,单发激光清洗未镀膜熔石英光学元件表面粒径为10μm的SiO2颗粒,取激光能量密度为2J/cm2,激光波长为355nm,脉宽为10.7ns,此模型下在激光作用的短时间内,颗粒的瞬间温度最高可达8000K,瞬间加速度可达109m/s2量级,从而使得颗粒能够脱离基底表面。

    • 实验样品为30mm×30mm的未镀膜熔石英元件、镀溶胶-凝胶SiO2薄膜的三倍频增透熔石英元件。制备典型污染物的光学元件样品时,以洁净实验样品作为基底,将粒径为1μm~50μm的SiO2粉末放入酒精中,震荡溶液以达到分散的目的,静置2h获得均匀的悬浊液后涂覆于基底,待酒精挥发后获得所制备样品。制备颗粒污染时使用溶液分散法,配置不同浓度的溶液,以定性的控制污染密度。获得低污染密度的未镀膜与镀膜熔石英样品,及高污染密度的镀膜熔石英样品。

      使用波长为355nm,脉宽为10.7ns的Nd:YAG脉冲激光器,针对熔石英元件表面的SiO2颗粒污染物进行在大气环境中的单发干式激光清洗,于基底下侧平行夹持放置真空度为18kPa、流速为15m/s的气流置换系统,所使用的气体种类为洁净空气。分析选取典型激光参量、污染密度进行实验。实验方案示意图如图 1所示。

      Figure 1.  Schematic diagram of the proposed system

      选取单点作用模式,激光能量为40mJ~240mJ,光斑面积为7mm2(椭圆形,长、短轴为3.4mm×2.6mm@1/e2),计算得实验中所用激光能量密度为0.57J/cm2~3.42J/cm2。清洗过程中使用原位检测对比方法,将污染区域栅格化并进行标记,保证清洗前后的表征区域相同。首先分别对低污染密度的未镀膜熔石英、镀膜熔石英样品,以及高污染密度的镀膜熔石英样品进行3组单发激光清洗实验,并使用尘埃粒子计数器对镀膜熔石英在清洗过程中的脱附颗粒数量进行统计。然后对高污染密度的镀膜熔石英样品进行不同激光能量密度的气流置换辅助激光清洗的对照实验。对清洗样品上残留的污染颗粒以0μm~1μm, 1μm~5μm, 5μm~15μm, 15μm~25μm, 25μm~50μm 5种颗粒粒径范围分类统计。

      使用Nikon光学显微镜观察清洗前后基底表面的洁净状况。使用暗场显微成像方法获得污染状态图像,二值化处理后使用数据平台软件分析,得到目标区域的颗粒数量与尺寸分布,并针对不同的粒径范围分布进行统计与计算。

    • 图 2是单发次激光清洗时不同激光能量密度对低污染密度的未镀膜/镀膜熔石英样品的激光清洗效果的影响。如图 2a所示,在正常清洗未产生损伤的情况下,未镀膜熔石英中,0.57J/cm2处即产生激光清洗效果,但对污染颗粒的移除率较低。在1.72J/cm2的能量密度下清洗效果最佳。如图 2b所示,对于镀膜熔石英样品,可见2.29J/cm2处清洗效果最佳。两种样品的激光清洗最佳工艺参量存在一定差异。

      Figure 2.  Effect of different laser densities on cleaning effeciency of low contamination density samples

      使用数据分析平台统计清洗前后样品表面的污染颗粒数量N1N2,计算激光清洗对污染颗粒的移除率$\eta=\frac{N_{1}-N_{2}}{N_{1}}$。在最佳激光能量密度作用下,对粒径为1μm以上污染颗粒的清洗效果最好。对该尺寸的颗粒移除率,未镀膜熔石英组为82.96%,镀膜熔石英组的为64.81%。这与不同尺寸的污染颗粒与基底间的分子作用力差异有关。对于粒径为1μm以下的污染颗粒,清洗移除率较差甚至颗粒数量增多,这是因为高激光能量将颗粒击碎导致该尺寸的颗粒数量提高,出现重附着现象,使清洗效果变差。

      图 3是单发次激光清洗时不同激光能量密度对高污染密度的镀膜熔石英样品的移除率。不同激光能量密度对污染颗粒的移除率在20%~74%之间,移除率最低的1.18J/cm2组为21.51%,最高的3.01J/cm2组移除率为73.58%。但在3.01J/cm2处,基底表面出现大量损伤。污染密度变高会导致基底的损伤阈值变低。因此有效清洗下,清洗效果最好的是1.72J/cm2组,其污染颗粒的移除率为57.96%。

      Figure 3.  Relationship between laser fluence and removal rate of high contamination coating fused silica

      图 4是分别在最佳激光能量密度下单点作用后的3组样品的暗场图。图 4a图 4c图 4e图 4b图 4d图 4f分别表示对应样品的清洗前后的暗场图。由图 4a图 4c可见, 在最佳激光通量下,低污染密度的未镀膜与镀膜熔石英样品单发次激光清洗效果良好,且并未产生损伤。但由图 4f高污染密度的镀膜熔石英样品可知,当光学元件表面污染颗粒密度较高时,采用单发次的激光清洗方法总是成比例的去除污染颗粒。因此,当污染密度过高时,上述激光清洗的方式不足以取得最佳的清洗效果,应考虑其它辅助工艺手段。

      Figure 4.  Dark field of samples before and after laser cleaning under optimum laser energy density

    • 实验过程中发现,激光清洗的能量密度越大,清洗过程中脱离颗粒数量越多。颗粒脱附现象非常明显,各个尺寸的脱离颗粒数量总计可达105量级。大量的脱附颗粒可能会对激光清洗的效果造成影响。因此, 在单发激光清洗的基础上加入气流置换系统进行实验。

      图 5为两种清洗方式的清洗后污染颗粒数量对比图。图 5a为单发次激光清洗,图 5b为使用真空度18kPa、流速约为15m/s的气流置换系统辅助的激光清洗,所使用的气体种类为洁净空气。经前期实验证明,单独的气流置换系统无法产生清洗效果。而气流置换系统辅助单发激光清洗后能够有效的提高其清洗效果。激光能量密度为1.15J/cm2时,相对于单发次激光清洗,气流置换系统的加入可减少21.82%的污染颗粒(残留颗粒的数量对比是692和451);1.72J/cm2组处的减少率最高,达到66.29%(残留颗粒的数量对比是717和241),存在最佳工艺区间。

      Figure 5.  Residual polluted particles after laser cleaning

      图 6为在最佳激光能量密度1.72J/cm2组下的清洗效果暗场图。图 6a为单发激光清洗时的暗场图,图 6b为气流置换系统辅助单发激光清洗的暗场图。由图可知,气流置换系统辅助带来的清洗效果提升明显,并能够在单发次激光清洗的基础上有效地减少粒径为0μm~5μm的污染颗粒的残留数量。

      Figure 6.  Dark field after laser cleaning under optimum laser energy density

    • 本研究使用波长为355nm的Nd:YAG脉冲激光器,对镀溶胶-凝胶膜熔石英元件表面的SiO2颗粒污染物进行单发次激光干式清洗与气流置换系统辅助的激光清洗,使用暗场显微成像和数据分析平台对清洗效果进行了量化分析。对于未镀膜与镀溶胶-凝胶膜熔石英样品,单发次激光清洗对于粒径1μm以上的SiO2颗粒清洗效果明显,移除率最高可达82.96%。此外,提出了一种气流置换辅助的激光清洗方法,结果表明,此方法可进一步增强对光学表面颗粒污染的去除效果。

参考文献 (21)

目录

    /

    返回文章
    返回