高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

780nm倍频激光器的研究

李贝贝 张翠平 王晓佳

引用本文:
Citation:

780nm倍频激光器的研究

    作者简介: 李贝贝(1993-), 男, 硕士研究生, 现主要从事光纤倍频激光器的研究.
    通讯作者: 张翠平, Zhangcp64@163.com
  • 基金项目:

    国家自然科学基金资助项目 61473166

  • 中图分类号: TN242

Research of 780nm frequency double laser

    Corresponding author: ZHANG Cuiping, Zhangcp64@163.com ;
  • CLC number: TN242

  • 摘要: 为了获得结构简单、成本相对低廉的高功率780nm激光, 采用了单块倍频晶体的腔外倍频方法。分布式反馈半导体激光器产生的连续激光注入光纤放大器后, 通过周期极化铌酸锂晶体进行准相位匹配, 取得了铷原子的饱和吸收光谱。结果表明, 该激光器产生了1.2W的倍频光, 具有较高的输出功率。这一结果对铷原子钟、原子干涉仪等冷原子物理实验的小型化是有帮助的。
  • Figure 1.  Schematic of experimental setup

    Figure 2.  Schematic of temperature control setup

    Figure 3.  Relationship of SH power and temperature of PPLN at fundamental power of 500mW

    Figure 4.  Dependence of the phase-matching temperature on fundamental power for PPLN crystals

    Figure 5.  Relationship of SH efficiency, temperature and focusing factors

    Figure 6.  Relationship of SH efficiency, SH power and fundamental powers

    Figure 7.  Relationship between SH power and the square of fundamental power

    Figure 8.  Relationship between wavelength and current of DFB

    Figure 9.  Saturated absorption spectrum of Rb

  • [1]

    VANIER J, MANDACHE C. The passive optically pumped Rb frequency standard: The laser approach[J]. Applied Physics, 2007, B87(4): 565-593. 
    [2]

    WIEMAN C E, HOLLBERG L. Using diode lasers for atomic physics[J]. Review of Scientific Instruments, 1991, 62(1): 21-42. doi: 10.1063/1.1142310
    [3]

    NUMATA K, CHEN J R, WU S T, et al. Frequency stabilization of distributed-feedback laser diodes at 1572nm for lidar measurements of atmospheric carbon dioxide[J]. Applied Optics, 2011, 50(7):1047-1056. doi: 10.1364/AO.50.001047
    [4]

    NAKAZAWA M. Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications[J]. Frontiers of Optoelectronics in China, 2010, 3(1):38-44. doi: 10.1007/s12200-009-0085-x
    [5]

    GUO Sh L, WANG J. Efficient generation of a continuous-wave, tunable 780nm laser via an optimized cavity-enhanced frequency doubling of 1.56μm at low pump powers[J]. Optical and Quantum Electronics, 2017, 49(35):1-16. 
    [6]

    CHIOW S, KOVACHY T, JASON M H, et al. Generation of 43W of quasi-continuous 780nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals[J]. Optics Letters, 2012, 37(18):3861-3863. doi: 10.1364/OL.37.003861
    [7]

    ONERA D. Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560nm[J]. Applied Physics, 2007, B89(23):177-180. 
    [8]

    KE D, ZHAI S Y, WANG X L, et al. Design of a reflective cavity for laser enhancement of the fourth harmonic generation[J]. Laser Technology, 2016, 40(2): 155-158(in Chinese). 
    [9]

    BOYD G D, KLEINMAN D A. Parametric interaction of focused gaussian light beams[J]. Applied Physics, 1968, 39(8):3597-3639. doi: 10.1063/1.1656831
    [10]

    FENG J X, LI Y M, LIU Q, et al. High-efficiency generation of a continuous-wave single-frequency 780nm laser by external-cavity frequency doubling[J]. Applied Optics, 2007, 46(17):3593-3596. doi: 10.1364/AO.46.003593
    [11]

    SANE S S, BENNETTS S, DEBS J E, et al. 11W narrow linewidth laser source at 780nm for laser cooling and manipulation of rubidium[J]. Optics Express, 2012, 20(8):8915-8919. doi: 10.1364/OE.20.008915
    [12]

    THOMPSON R, TU M, AVELINE D, et al. High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 2003, 11(14): 1709-1713. doi: 10.1364/OE.11.001709
    [13]

    SAEED G S, SUDDAPALLI C K, ALIREZA K, et al. Thermal effects in high-power continuous-wave single-pass second harmonic generation[J]. Quantum Electronics, 2014, 20(4):563-572.
    [14]

    HASHEMI S S, SABOURI S G, KHORSANDI A. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation[J]. Journal of Optics, 2018, 20(4): 045502. doi: 10.1088/2040-8986/aab1df
    [15]

    GUO Sh L, HAN Y Sh, WANG J, et al. Investigation of quasi-phase-matching frequency doubling of 1560nm laser by use of PPLN and PPKTP crystals[J]. Acta Optica Sinica, 2012, 32(3): 0319001(in Chinese). doi: 10.3788/AOS201232.0319001
    [16]

    LOU Q H. High-power fiber laser and its applications[M]. Hefei: University of Science and Technology of China Press, 2009: 130-131(in Chinese).
    [17]

    FEJER M M, MAGEL G A, JUNDT D H, et al. Quasi-phase-matched second harmonic genera-tion:Tuning and tolerances[J]. Quantum Electronics, 1992, 28(11): 2631-2654. doi: 10.1109/3.161322
    [18]

    MIZUUCHI K, MORIKAWA A, SUGTTA T, et al. High-power continuous wave green generation by single-pass frequency doubling of a Nd:GdVO4 laser in a periodically poled MgO:LiNbO3 operating at room temperature[J]. Japanese Journal of Applied Physics, 2003, 42(2): L1296-L1298.
    [19]

    ZHANG Y T, QU T Zh, QIAN J, et al. Thermal effect analysis of 1560nm laser frequency doubling in a PPLN crystal[J]. Chinese Journal of Lasers, 2015, 42(7):0708002(in Chinese). doi: 10.3788/CJL201542.0708002
  • [1] 姚江宏颜博霞陈亚辉邓浩亮陈绍林许京军张光寅 . 周期极化近化学计量掺镁铌酸锂晶体倍频研究. 激光技术, 2004, 28(2): 141-143.
    [2] 曹三松张向阳黄燕琳李光荣苏心智 . 1J倍频Nd:YAG激光器. 激光技术, 2003, 27(2): 101-102,105.
    [3] 曾江斌陈怀熹梁万国缪龙周煌冯新凯邹小林李广伟 . 周期性极化掺镁铌酸锂晶体光参量振荡研究. 激光技术, 2016, 40(3): 409-412. doi: 10.7510/jgjs.issn.1001-3806.2016.03.023
    [4] 薛亮平姚江宏颜博霞贾国治许京军张光寅 . 周期极化掺镁铌酸锂晶体光参变产生研究. 激光技术, 2007, 31(2): 120-122.
    [5] 邓华荣李彤牛瑞华薛亮平李燕凌曹文勇 . PPLN晶体实现2m激光输出的理论分析. 激光技术, 2013, 37(1): 63-67. doi: 10.7510/jgjs.issn.1001-3806.2013.01.016
    [6] 赵致民李隆田丰李春白晋涛 . 高功率端面泵浦腔内倍频瓦级绿光激光器. 激光技术, 2003, 27(4): 331-333.
    [7] 阳琴陈孝林曾诚徐诗月杨俊敏张志坚杨峰高剑波 . 基于DPMZM的微波光子倍频激光雷达仿真分析. 激光技术, 2023, 47(6): 729-735. doi: 10.7510/jgjs.issn.1001-3806.2023.06.001
    [8] 戴厚梅白晋涛 . LD抽运Nd:YAG/KTP腔内倍频16W连续波绿光激光器. 激光技术, 2008, 32(3): 312-313.
    [9] 曾传相周业为刘训章 . 调QNd:YAG脉冲激光在LiIO3中倍频的应力波. 激光技术, 1997, 21(6): 349-351.
    [10] 张辉荣钟杰徐观峰李斌 . Zn, Mg:LiNbO3晶体的光学特性研究. 激光技术, 2006, 30(6): 578-580.
    [11] 秦雪飞周卫东 . 基于PPLN的中红外连续光学参变振荡器研究进展. 激光技术, 2013, 37(2): 198-203. doi: 10.7510/jgjs.issn.1001-3806.2013.02.015
    [12] 刘晓娟付圣贵韩克祯葛筱璐 . 光纤黄光激光器的研究进展. 激光技术, 2011, 35(2): 210-213. doi: 10.3969/j.issn.1001-3806.2011.02.019
    [13] 巩马理 . 二极管泵浦的微型绿光激光器. 激光技术, 1997, 21(1): 5-6.
    [14] 王金定王安帮王云才 . 高重复频率的增益开关Nd3+:YVO4+KTP绿光激光器. 激光技术, 2008, 32(4): 360-362.
    [15] 郑晖林季鹏史斐戴殊韬江雄康治军翁文林文雄 . 倍频过程对激光光束质量及空间分布的影响. 激光技术, 2009, 33(1): 67-70.
    [16] 高胜淼闫珂柱韩培高许春玉王荣新 . 飞秒激光诱导硅材料表面周期结构的研究. 激光技术, 2015, 39(3): 395-398. doi: 10.7510/jgjs.issn.1001-3806.2015.03.025
    [17] 王天亮袁牧野刘波徐志康 . 基于微波光子学的倍频三角波生成方法. 激光技术, 2019, 43(1): 79-82. doi: 10.7510/jgjs.issn.1001-3806.2019.01.016
    [18] 张岩刘超肖长顺张俊香 . 内调制技术和Pound-Drever-Hall技术对894.6nm倍频腔的稳频比较. 激光技术, 2017, 41(1): 47-50. doi: 10.7510/jgjs.issn.1001-3806.2017.01.010
    [19] 朱保华黄静张宝武张文涛蒋曲博熊显名 . 1维光学粘胶作用下铬原子束空间分布特性. 激光技术, 2012, 36(6): 832-835. doi: 10.3969/j.issn.1001-3806.2012.06.030
    [20] 柯达翟苏亚王小蕾林海枫陈玮冬李丙轩廖文斌张戈 . 腔内四倍频激光增强反射腔设计. 激光技术, 2016, 40(2): 195-198. doi: 10.7510/jgjs.issn.1001-3806.2016.02.009
  • 加载中
图(9)
计量
  • 文章访问数:  5696
  • HTML全文浏览量:  4148
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-26
  • 录用日期:  2019-01-03
  • 刊出日期:  2019-09-25

780nm倍频激光器的研究

    通讯作者: 张翠平, Zhangcp64@163.com
    作者简介: 李贝贝(1993-), 男, 硕士研究生, 现主要从事光纤倍频激光器的研究
  • 太原理工大学 机械工程学院 车辆工程系, 太原 030024
基金项目:  国家自然科学基金资助项目 61473166

摘要: 为了获得结构简单、成本相对低廉的高功率780nm激光, 采用了单块倍频晶体的腔外倍频方法。分布式反馈半导体激光器产生的连续激光注入光纤放大器后, 通过周期极化铌酸锂晶体进行准相位匹配, 取得了铷原子的饱和吸收光谱。结果表明, 该激光器产生了1.2W的倍频光, 具有较高的输出功率。这一结果对铷原子钟、原子干涉仪等冷原子物理实验的小型化是有帮助的。

English Abstract

    • 780nm激光广泛应用于原子物理学[1]和光谱学[2]、大气传感[3]和光通信[4]。可以通过两种方法得到窄线宽、高功率的780nm激光。一种是780nm外腔半导体激光器直接通过半导体锥形放大器放大功率来产生实验需要的780nm激光;另一种是将通讯波段1560nm激光作为基频光,通过光纤放大器放大功率后,进入周期极化非线性倍频晶体,在准相位匹配的情况下获得高功率的倍频光[5-8]。后者的实验装置结构简单、价格相对低廉,在国内外已经有很多的研究。

      早在1968年,BOYD等人详细分析了倍频效率的影响参量,并计算出倍频过程的聚焦参量值[9]。之后的几十年,涌现了大量围绕提高倍频效率和光功率的实验,FENG等人采用外腔谐振倍频的方法,波长为1560nm的基频光多次穿过周期极化铌酸锂(periodically poled lithium niobate, PPLN)晶体,从而将倍频效率提高至58%[10]。SANE等人采用提高基频光功率的办法,窄线宽光纤激光器产生的1560nm连续光通过光纤放大器至30W后,经过PPLN倍频晶体进行准相位匹配后得到11.4W的780nm激光、倍频效率为36%[11]。THOMPSON等人采用了多块倍频晶体的方法,1560nm的外腔半导体激光器首先经光纤放大器功率放大至5W,再经过两块PPLN晶体倍频,得到900mW的780nm激光,最后用调制转移光谱技术锁频,该实验装置用于铷原子的激光冷却[12]。除了外腔谐振倍频、提高基频光功率和增加倍频晶体长度的方法,还可以优化倍频晶体的温控结构[13]。HASHEMI等人于2018年计算分析了热效应对倍频光光束质量的影响,并通过实验得出开放式温控比封闭式倍频效率更高、光斑质量更好的结论[14]。目前尚未发现国内采用单块倍频晶体的腔外倍频结构,获得高功率的780nm倍频光。WANG团队于2012年对比了PPLN晶体与PPKTP晶体的780nm倍频光实验,所得倍频光功率分别为336mW, 210mW[15]

      本文中介绍了激光倍频的基本概念,并分析了温度与准相位匹配的关系以及基频光的束腰半径、功率对倍频效率的影响。实验中采用单块倍频晶体的腔外倍频结构,在8W的1560nm基频光注入条件下,获得1.2W的780nm连续激光,倍频效率为15%,倍频光功率高于国内同结构所得实验结果,最后扫描激光管的注入电流得到铷原子的饱和吸收光谱。

    • 一束频率为ω1的基频光发生倍频的过程可以分为两步:(1)产生频率为2ω1的极化波,该极化波在倍频晶体中心的相速度取决于基频光的折射率n1,波长λ1=c/(2ν1n1), c为真空光速; (2)能量从极化波转换到频率为2ν1的电磁波,该电磁波的相速度决定于倍频光的折射率n2,波长λ2=c/(2ν1n2)。为了使两者之间能量实现有效转换,倍频光与极化波需同相。

      实际上,倍频晶体在光频域中存在色散现象,所以辐射通常会滞后于极化波,对于共线光束,极化波与倍频光之间的相位失配可以用波数差Δk来表示[16]:

      $ \Delta k = 4{\rm{ \mathsf{ π} }}\left( {{n_1} - {n_2}} \right)/{\lambda _1} $

      (1)

      式中,λ1是基频光的波长。温度变化会影响光在倍频晶体中的折射率,进而改变极化波与倍频光的相位匹配度。半峰全宽(full width at half maximum, FWHM)定义为可产生倍频的温度谐波范围ΔT,取值为倍频效率下降到一半时所对应的温度范围。计算公式为[17]:

      $ \Delta T = \frac{{0.4429{\lambda _1}}}{l}{\left[ {\frac{{\partial {n_2}}}{{\partial T}} - \frac{{\partial {n_1}}}{{\partial T}} - \alpha \left( {{n_2} - {n_1}} \right)} \right]^{ - 1}} $

      (2)

      式中,l是倍频晶体的长度,α是晶体的线性热膨胀系数。

      倍频转换效率η<20%时,表示为[18]:

      $ \eta = \frac{{{P_2}}}{{{P_1}}} = \frac{{8{{\rm{ \mathsf{ π} }}^2}{l^2}d_{{\rm{eff}}}^2}}{{n_1^2{n_2}\lambda _1^2c{\varepsilon _0}}}\frac{{{P_1}}}{A}{{\mathop{\rm sinc}\nolimits} ^2}\left( {\frac{{\Delta kl}}{2}} \right) $

      (3)

      式中,P2P1分别是倍频光和基频光的功率,ε0是真空的介电常数,A是基频光束的面积, deff是晶体的有效非线性系数。由(2)式和(3)式可知,倍频转换效率与晶体长度、基频光功率密度和相位匹配度有关。其中,功率密度与基频光功率、束腰半径和激光器线宽有关,相位匹配度与晶体温度、激光光束发散角有关。束腰半径减小时,功率密度增大,同时发散角也会增大,易造成相位失配,所以在一定程度上功率密度与相位匹配度相互制约。

    • 实验装置如图 1所示。窄线宽(1.3MHz)连续可调谐的分布式反馈(distributed feedback, DFB)半导体激光器(QDFBLD-1550-20,QPHOTONICS)作为种子光源,经保偏光纤耦合至掺铒光纤放大器(erbium-doped optical fiber amplifier, EDFA)。在实验中,EDFA的准直器输出端已标定了偏振方向,输出光束经聚焦透镜提高光功率密度后,耦合至PPLN晶体进行准相位匹配倍频。PPLN晶体尺寸为1mm×6mm×50mm,两端镀有1560nm/780nm的增反膜,极化周期通道为19.6μm。PPLN晶体输出耦合光束,在半透镜(dichroic mirror, DM)的分光作用下,其中的1560nm激光被反射吸收,780nm激光则通过偏振分光棱镜(polarization beam splitter, PBS)后,一束通过光纤耦合头(fiber coupler, FC)耦合进单模保偏光纤,另一束对射穿过铷泡进入光电探测器(photo diode, PD),调节DFB的注入电流可得到铷原子的饱和吸收光谱。

      Figure 1.  Schematic of experimental setup

      由(2)式可知, 晶体的温度会影响倍频过程中的相位匹配度,故设计了高精度的晶体温控装置。如图 2所示,温控装置由半导体热电致冷器(thermoelectric cooler, TEC)、负温度系数热敏电阻(negative temperature coefficient, NTC)、比例-积分-微分电路(proportional integral derivative, PID)组成,斜面夹持材料及热沉为导热性能优良的黄铜。用绝热材料电木封装后的温控盒安装在调节架上,调节晶体中心置于共焦系统的焦点处,测得设定温度为55.3℃处1h内的晶体温度稳定性为±0.005℃。

      Figure 2.  Schematic of temperature control setup

    • 如果二次谐波(second harmonic, SH)产生过程中完全满足相位匹配条件,则传播中的倍频光波和不断产生的极化波之间保持相位的一致性,相互干涉,产生的二次谐波强度由零开始逐渐增大,直至基频波的功率完全转为二次谐波的功率,获得最大的二次谐波输出功率。由(2)式可知, 相位匹配度受到温度的影响,测得PPLN晶体温度调谐曲线如图 3所示。实线为sinc2函数的拟合图像。相位匹配温度在基频光功率为500mW时约为55.3℃,此时的ΔT=3℃。

      Figure 3.  Relationship of SH power and temperature of PPLN at fundamental power of 500mW

      PPLN晶体在基频光不同功率下,所测得的最佳温度曲线如图 4所示。基频光所对应的最佳相位匹配的设定温度值随功率的增加而降低,原因是随着功率的增加,晶体吸收的热量随之增加,需要降低设定温度值以补偿晶体温度的升高,造成最佳相位匹配的设定温度值逐渐减小[19]

      Figure 4.  Dependence of the phase-matching temperature on fundamental power for PPLN crystals

      在PPLN晶体前放置透镜,可以提高光功率密度,进而提高倍频效率。由此引入参量聚焦因子,计算公式如下:

      $ \xi = l/b = l{\lambda _\omega }/\left( {2{\rm{ \mathsf{ π} }}w_0^2{n_\omega }} \right) $

      (4)

      式中,b是共焦参量,w0为光束的束腰半径。

      分别测试了焦距为20mm, 30mm, 35mm, 50.8mm, 75mm, 100mm, 125mm的透镜,倍频结果如图 5所示。实验表明,选用30mm焦距的透镜倍频效率最高,此时聚焦因子ξ=0.38。

      Figure 5.  Relationship of SH efficiency, temperature and focusing factors

      由(3)式可知,当转换效率不高时,倍频效率与基频光功率成正比,实验数据如图 6所示。倍频光功率与基频光功率的平方成正比,实验数据如图 7所示。当基频光功率为8W时,最高得到1.2W的倍频光,倍频效率15%,比理论计算的倍频效率值20%低。原因是透镜及晶体端面的反射造成部分光功率的损失。

      Figure 6.  Relationship of SH efficiency, SH power and fundamental powers

      Figure 7.  Relationship between SH power and the square of fundamental power

      调节DFB的温度和注入电流可以改变激光波长,5组不同温度下,改变注入电流,温度调谐率为-12GHz/℃,电流调谐率为-0.37GHz/mA,波长调谐范围为1530nm~1570nm,实验数据如图 8所示。通过在DFB的电流输入端添加一个8MHz的调制信号,得到铷原子的饱和吸收光谱,如图 9所示。在实验中观察到饱和吸收光谱存在抖动现象,可能是激光波长本身存在抖动,所以扫频得到的光谱不稳定。

      Figure 8.  Relationship between wavelength and current of DFB

      Figure 9.  Saturated absorption spectrum of Rb

    • 实验分析了影响晶体倍频效率的因素,通过提高基频光功率至8W,选用50mm长的PPLN晶体以及±0.005℃的高精度晶体温控,得到了1.2W的倍频光,倍频效率为15%,满足实验系统对功率的要求。观察到饱和吸收光谱存在抖动,分析是DFB激光器自由运转的频漂过大,下一步的工作是选用电流噪声更低的激光控制器,以便实现激光锁频。

参考文献 (19)

目录

    /

    返回文章
    返回