高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频微片激光器的功率均衡机制实验研究

汪延安 柯一枝 崔恩楠 潘镔 蔡美伶 陈松 聂佳林 胡淼

引用本文:
Citation:

双频微片激光器的功率均衡机制实验研究

    作者简介: 汪延安(1991-), 男, 硕士研究生, 主要从事微片激光器方面的研究.
    通讯作者: 胡淼, miao_hu@foxmail.com
  • 中图分类号: TN248.1

Experimental study about power balance mechanism in dual-frequency microchip lasers

    Corresponding author: HU Miao, miao_hu@foxmail.com
  • CLC number: TN248.1

  • 摘要: 为了研究双频Nd:YVO4微片激光器的功率均衡机制,利用实验研究分析了微片激光器的抽运电流、工作温度和谐振波长等参量之间关系。不断增大双频激光器抽运电流,通过降低晶体温度不断重新实现双频激光功率的均衡,最终获得了不同抽运电流下的双频激光器的功率均衡温度,以及双频功率积与抽运电流的关系数据。结果表明,双频激光信号功率均衡温度与抽运电流呈分段负相关,双频功率积与抽运电流呈正相关。此结果说明通过改变抽运电流和温控温度可以实现功率可调的功率均衡的双频激光信号输出。
  • Figure 1.  Mode schematic of a dual-frequency microchip laser

    Figure 2.  Diagram of experimental setup

    Figure 3.  Normalized laser spectrum at different pump currents

    Figure 4.  a—relationship between equalization temperature of dual band laser power and pump current b—relationship between wavelength of dual frequency laser and pumping current

    Figure 5.  Relationship between normalized power product and pump current

  • [1]

    YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335. doi: 10.1109/JLT.2008.2009551
    [2]

    WAN X J, ZHANG Sh L, TAN Y D. Development of optical feedback technology of LD pumped microchip lasers[J]. Laser Technology, 2006, 30(1):9-12(in Chinese). 
    [3]

    KOENIG S, LOPEZ-DIAZ D, ANTES J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12):977-981. doi: 10.1038/nphoton.2013.275
    [4]

    SEEDS A J, FICE M J, BALAKIER K, et al. Coherent terahertz photonics[J]. Optics Express, 2013, 21(19):22988-23000. doi: 10.1364/OE.21.022988
    [5]

    SEEDS A J, SHAMS H, FICE M J, et al. THz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3):579-586. doi: 10.1109/JLT.2014.2355137
    [6]

    PILLET G, MORVAN L, BRUNEL M, et al. Dual-frequency laser at 1.5μm for optical distribution and generation of high-purity microwave signal[J]. Journal of Lightwave Technology, 2008, 26(15):2764-2773. doi: 10.1109/JLT.2008.927209
    [7]

    CHENG C, ZHANG S. Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference[J]. Journal of Physics, 2009, D42(15):155107. 
    [8]

    DÉLEN X, BALEMBOIS F, GEORGES P. Temperature dependence of the emission cross section of Nd:YVO4 around 1064nm and consequences on laser operation[J]. Journal of the Optical Society of America, 2011, B28(5):972-976. 
    [9]

    NOTAKE T, SAITO T, TATEMATSU Y, et al. Development of a novel high power sub-THz secong harmonic gyrotron[J]. Physical Review Letters, 2009, 103(22):225002. doi: 10.1103/PhysRevLett.103.225002
    [10]

    FORD C J B, SIMPSON P J, ZAILER I, et al. Charging and double-frequency Aharonov-Bohm effects in an open system[J]. Physical Review, 1994, B49(24):17456-17459. 
    [11]

    HU M, SUN X, LI Q L, et al. Investigation of mode competition in dual-frequency Nd:YVO4 microchip laser[J]. Chinese Journal of Lasers, 2015, 42(7):0702009(in Chinese). doi: 10.3788/CJL
    [12]

    GOUËT J L, MORVAN L, ALOUINI M, et al. Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation:beyond the standard limit of tunability[J]. Optics Letters, 2007, 32(9):1090-1092. 
    [13]

    GUDELEV V G, MASHKO V V, NIKEENKO N K, et al. Diode-pumped cw tunable two-frequency YAG:Nd3+, laser with coupled resonators[J]. Applied Physics, 2003, B76(3):249-252. 
    [14]

    CHEN X F, DENG Zh Ch, YAO J P. Photonic generation of microwave signal using a dual-wavelength single -longitudinal-mode fiber ring laser[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2):804-809.
    [15]

    ZHOU B Q, GAO Y Zh, CHEN Ch R, et al. Principles of lasers[M]. 6th ed.Beijing:National Defence Industry Press, 2008:72-75(in Chinese).
    [16]

    SCHMITT N P, PEUSER P, HEINEMANN S, et al. A model describing the signal and multiple line spectra of tunable microcrystal laser[J]. Optics & Quantum Electronics, 1993, 25(8):527-544. 
    [17]

    LIU W S, JIANG M, CHEN D R, et al. Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwane generation[J]. Journal of Lightwave Technology, 2009, 27(20):4455-4459. 
    [18]

    HU M, ZHANG Y, GONG X R, et al. Invertigation of power equalization in a dual-frequency Nd:YVO4 microchip laser[J]. Journal of Optorlectronics·Laser, 2016, 27(2):145-149(in Chinese). 
    [19]

    ZHAO J T, FENG G Y, YANG H M, et al. Analysis of thermal effect and its influence on output power of thin disk laser[J]. Acta Physica Sinica, 2012, 61(8):084208(in Chinese). 
  • [1] 崔文超郭瑞民王德发董贺伟 . 分布反馈激光器温度与电流控制研究. 激光技术, 2019, 43(4): 437-441. doi: 10.7510/jgjs.issn.1001-3806.2019.04.001
    [2] 袁军国詹春李小国刘德明于敦录 . 半导体激光器高精度稳频输出控制系统. 激光技术, 2006, 30(6): 650-652,663.
    [3] 韩晓俊李正佳朱长虹 . 医用半导体激光器的温度控制. 激光技术, 1998, 22(4): 250-253.
    [4] 郭凤玲徐广平黄宝库 . 基于DRV595的激光器恒温控制系统. 激光技术, 2017, 41(5): 734-737. doi: 10.7510/jgjs.issn.1001-3806.2017.05.023
    [5] 高岚王景峰杨苏辉赵长明 . 激光二极管抽运单块Nd:YAG激光器电源的研制. 激光技术, 2006, 30(6): 664-666.
    [6] 王宗清段军曾晓雁 . 大功率半导体激光器高精度温控系统研究. 激光技术, 2015, 39(3): 353-356. doi: 10.7510/jgjs.issn.1001-3806.2015.03.016
    [7] 方刘海文继国江月成潘冬帅欣 . 基于数字滤波的半导体激光器温控系统设计. 激光技术, 2016, 40(5): 701-705. doi: 10.7510/jgjs.issn.1001-3806.2016.05.017
    [8] 高平东张法全 . 高精度半导体激光器温控系统的设计与实现. 激光技术, 2014, 38(2): 270-273. doi: 10.7510/jgjs.issn.1001-3806.2014.02.026
    [9] 廖志烨邓洪峰吴凌华张恩华张宇 . 基于半导体激光器高精度恒温系统设计. 激光技术, 2012, 36(6): 771-775. doi: 10.3969/j.issn.1001-3806.2012.06.015
    [10] 欧攀闫平巩马理张春熹 . 三点抽运的高功率双包层光纤激光器优化设计. 激光技术, 2007, 31(1): 57-60.
    [11] 雷呈强汪岳峰黄峰侯军燕贾文武殷智勇 . 高功率全固态激光器抽运耦合技术进展. 激光技术, 2011, 35(6): 725-733. doi: 10.3969/j.issn.1001-3806.2011.06.002
    [12] 李波王又青 . 高功率轴快流CO2激光器控制系统的研制. 激光技术, 2010, 34(2): 285-288. doi: 10.3969/j.issn.1001-3806.2010.02.039
    [13] 高清松童立新蒋建峰唐淳 . 高功率二极管激光器面阵四通抽运耦合系统. 激光技术, 2005, 29(2): 135-137.
    [14] 李成荣陈秀艳李修郑新亮汪俊陈浩伟任兆玉白晋涛 . 164W LD侧抽运准连续Nd:YAG/HGTR-KTP高功率绿光激光器. 激光技术, 2009, 33(3): 291-293,296.
    [15] 郭嘉伟李彤牛瑞华薛亮平李燕凌王宏元 . Cr,Tm,Ho:YAG激光器温度特性的数值分析. 激光技术, 2011, 35(6): 761-764. doi: 10.3969/j.issn.1001-3806.2011.06.010
    [16] 郭云霄巩马理薛海中李晨闫平柳强陈刚 . 激光侧抽运晶体温度分布的非均匀发热模型计算. 激光技术, 2007, 31(3): 238-241.
    [17] 刁述妍 . 温度调谐宽波段光参量振荡器的实验研究. 激光技术, 2009, 33(3): 294-296.
    [18] 彭登峰王又青李波 . 高功率激光实时检测与控制系统的研究. 激光技术, 2006, 30(5): 483-485.
    [19] 高恒刘佳铭杨闯赵刚李斌彭绪金刘亚萍 . 用于远程激光测距机的小体积高功率固体激光器. 激光技术, 2019, 43(5): 597-600. doi: 10.7510/jgjs.issn.1001-3806.2019.05.002
    [20] 路英宾卿光弼兰戈陈德章高剑波刘韵 . LD侧面抽运的铒玻璃激光器. 激光技术, 2006, 30(3): 329-331.
  • 加载中
图(5)
计量
  • 文章访问数:  5003
  • HTML全文浏览量:  3436
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-20
  • 录用日期:  2017-12-20
  • 刊出日期:  2018-09-25

双频微片激光器的功率均衡机制实验研究

    通讯作者: 胡淼, miao_hu@foxmail.com
    作者简介: 汪延安(1991-), 男, 硕士研究生, 主要从事微片激光器方面的研究
  • 1. 杭州电子科技大学 通信工程学院, 杭州 310018
  • 2. 杭州电子科技大学 卓越学院, 杭州 310018
  • 3. 国家电网有限公司 浙江省电力公司 物资分公司, 杭州 310007

摘要: 为了研究双频Nd:YVO4微片激光器的功率均衡机制,利用实验研究分析了微片激光器的抽运电流、工作温度和谐振波长等参量之间关系。不断增大双频激光器抽运电流,通过降低晶体温度不断重新实现双频激光功率的均衡,最终获得了不同抽运电流下的双频激光器的功率均衡温度,以及双频功率积与抽运电流的关系数据。结果表明,双频激光信号功率均衡温度与抽运电流呈分段负相关,双频功率积与抽运电流呈正相关。此结果说明通过改变抽运电流和温控温度可以实现功率可调的功率均衡的双频激光信号输出。

English Abstract

    • 现如今,日益增长的数据流量使得整个社会对频谱资源及带宽有了越来越高的要求。同时具有微波、远红外波优点的毫米波(1mm~10mm)由于其频段高、波束宽、损耗小、方向性好、抗干扰性强等优点在各应用领域都展现出了巨大的应用前景[1-5]。相比于两个独立振荡的单频激光器组成双频光源,使用输出频差稳定的双频微片激光器,外差拍频可以产生更高纯度的毫米波信号[6-7]。在众多激光器增益介质材料中,掺钕(Nd)离子的材料,比如Nd:YAG陶瓷/晶体和Nd:YVO4晶体由于其非常优秀的光学性能(高增益系数和宽吸收带宽),是理想的微片激光器增益介质材料[8-11]。GOUËT等人[12]报道的双频单轴Nd:YAG激光器,利用加载电压的锆钛酸铅镧陶瓷(lead lanthanum zirconate titanate, PLZT)实现模式分裂,通过调整PLZT标准具所受的电压实现频差的可调谐,最终实现频差在11GHz~127GHz内可调谐的双频信号输出。白俄罗斯国家科学院的GUDELEV等[13]研究人员报道的基于耦合腔结构的双频Nd:YAG激光器,通过耦合腔和力控Nd:YAG晶体引起的双折射效应分别实现模式选择和模式分裂,最终实现频差在50MHz~8.4GHz内可调谐的双频信号输出。

      考虑到双频激光器的输出光信号投射到传感器上并外差产生射频信号时,输出射频信号的振幅与双频光信号振幅呈乘积关系[14]。因此当无法提高输出光总功率的前提下,使双频光信号的输出光功率达到功率均衡也可以获得更高的外差转换效率[15]。本文中对基于Nd:YVO4单块晶体的双频激光器进行实验研究,通过改变晶体热沉的温度对不通抽运电流下双频激光信号的功率均衡度进行调节,最后获得功率均衡的双频激光信号。

    • 多波长激光器的波长数理论模型如下所示[16]

      $ M = \frac{{\Delta {\nu _0}}}{{\Delta \nu }} = \frac{{2\Delta {\nu _0}nL}}{c} $

      (1)

      式中,M为晶体增益内波长数的最大值;Δν0为晶体的增益频宽;c为真空中光的传播速度;n为晶体的折射率;L为激光腔体的几何长度。

      图 1为双频激光器模谱示意图。横坐标表示频率ν,纵坐标表示激光晶体增益g(ν)。通过设计激光墙体的几何长度,可以将模式间隔Δν=c/(2nL)控制在(0.5~1)Δν0之间,即可获得双频激光信号输出[17]

      Figure 1.  Mode schematic of a dual-frequency microchip laser

      均匀加宽增益介质的固体激光器的发射谱符合洛伦茨线型分布[18]。由于拍频效率受双频激光信号的功率均衡度的直接影响,而双频波长在增益介质发射谱内对应的发射截面不同是造成功率均衡度差异的主要因素。当双频激光信号的双频波长在发射谱峰值两侧对称位置时,其对应的发射截面值是相同的,进而其输出的双频信号是均衡的。

      Nd:YVO4晶体的温度变化会对其折射率和腔体几何长度产生影响[19]。由于双频激光器的波长与腔体的光学长度相关,因此温度变化将导致双频波长变化。在实验中,可调节激光晶体温度,从而实现激光晶体发射谱与双频微片激光器谐振波长的相对移动,并且最终获得功率均衡的双频激光信号输出。

    • 图 2所示是实验装置。尾纤输出的激光二极管(laser diode, LD)是抽运源,输出的光纤芯径为400μm,波长是808nm。抽运光通过光纤之后,采用焦距为100mm的非球面凸透镜,聚焦到Nd:YVO4晶体中。透镜和增益介质的中心位于同一光轴上,功率光纤和透镜的距离是固定的。利用光谱分析仪(optical spectrum analyzer, OSA)对双频激光的光谱特性进行测量,分辨率为0.02nm。

      Figure 2.  Diagram of experimental setup

      在实验中,采用一个a-cut的Nd:YVO4晶体作为双频微片激光器的增益介质。Nd:YVO4晶体的两个端面上各镀上了两层介质膜,分别为输入耦合镜和输出耦合镜,这两层膜和Nd:YVO4晶体共同形成了一个腔长为1mm的激光谐振腔。其中,Nd:YVO4晶体纵向尺寸为1mm,Nd3+离子的原子数分数为0.010,折射率为2.165,输入耦合镜的膜系参量为1064nm高反射膜(HR@1064nm)和808nm增透膜(AR@808nm),输出耦合镜的膜系参量为1064nm反射膜(反射系数R=0.9@1064nm)。为了对双频微片激光器进行良好的温控,实验中选用了热沉铝块夹持微片晶体,同时在Nd:YVO4晶体的外部包覆了一层0.1mm厚的铟箔,热沉通过半导体制冷器(thermoelectric cooler, TEC)进行温度控制,温控精度为0.1℃,温控范围为0℃~100℃。

      在实验过程中,调节抽运电流使之从12.0A以0.1A的间隔变化到14.5A,每次改变抽运电流之后都通过改变晶体温度并经过一段时间使双频激光达到均衡状态,记录下不同抽运电流下达到功率均衡时的激光光谱图、温度和双频功率。分析功率均衡温度、双频功率和抽运电流之间的关系。

      当抽运电流从12.0A变化到14.5A时,获得了一系列功率均衡的双频光谱。图 3是电流从12.0A以0.1A的间隔变化到14.5A时得到的归一化激光光谱图。以14.5A时的短波激光光谱的最大值作归一化。由图 3可见,随着抽运电流的增加,双频激光光谱大致保持不变,信号强度逐步增加。图 4图 3中的具体参量。图 4a图是双频功率均衡温度与抽运电流的关系,图 4b是双频激光波长与抽运电流的关系。

      Figure 3.  Normalized laser spectrum at different pump currents

      Figure 4.  a—relationship between equalization temperature of dual band laser power and pump current b—relationship between wavelength of dual frequency laser and pumping current

      当抽运电流从12.0A增加到14.5A的过程中,均衡温度在电流为12.9A与13.9A之后发生了两次明显的跳变,分别从22.8℃, 12.2℃跳变至15.5℃, 25.8℃;在每一个分段的小区间内,直线是线性拟合的结果,校正决定系数分别为0.224, 0.519及0.701,斜率分别为-3.11℃/A, -3.67℃/A及-3.61℃/A,即可认为功率均衡温度与抽运电流均呈负相关,如图 4a所示,这是由于当抽运电流增大时,晶体温度升高,故需要降低激光晶体温度以重新实现功率均衡。双频激光波长与抽运电流的关系如图 4b所示,从图中可知,波长也发生了与温度相同趋势的跳变。其中,当电流从12.9A变化到13.0A的时候,长波波长从1064.068nm蓝移至1064.036nm,短波波长从1064.324nm蓝移至1064.284nm;当抽运电流由13.9A加至14.0A时,长波波长从1064.292nm红移到1064.344nm,短波波长从1064.024nm红移到了1064.108nm,这是由于跳模引起的。

      图 5是归一化功率乘积与抽运电流的关系图。取不同抽运电流下双频功率的归一化结果做积。当抽运电流由12.0A以0.1A的间隔变化到14.5A时,归一化功率积从0.449变化到了0.986,其中最大值0.986,最小值0.255。图中直线是线性拟合的结果,校正决定系数为0.904,拟合直线的斜率为0.252,可认为归一化功率积随抽运电流的增大而增大,并且呈线性关系。尽管大体呈线性关系,但是仍然可以看到,当电流较小时,归一化功率积偏离拟合直线的现象较为严重,这主要是实验所采用温控精度为0.1℃,没有办法实现完美功率均衡造成的,因此在功率较低的条件下,拟合偏离更加严重。在下一阶段采用精度为0.01℃的温控,即可获得更好的拟合效果。

      Figure 5.  Relationship between normalized power product and pump current

    • 在功率均衡的双频微片激光器中,当抽运电流增大时,需要降低激光晶体温度重新实现功率均衡,功率均衡温度与抽运电流呈分段负相关关系;此外当抽运电流增大时,在重新实现功率均衡之后,归一化功率积随抽运电流的增大而增大,因此,通过改变抽运电流和温控温度可以实现功率可调的功率均衡的双频激光信号输出。

参考文献 (19)

目录

    /

    返回文章
    返回