高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光测量微纳材料热物性参量研究进展

夏胜全 吕学超 王晓波 何建军 王巍 窦政平

引用本文:
Citation:

飞秒激光测量微纳材料热物性参量研究进展

    作者简介: 夏胜全(1982-),男,博士,工程师,目前主要从事高能束焊接及应用、数值模拟等研究。E-mail:xiashengquan2001@163.com.
  • 中图分类号: TG113.22

Research advance of measurement of thermo-physical property of micro-nano material with femtosecond laser

  • CLC number: TG113.22

  • 摘要: 随着微纳加工技术的发展,微纳尺度下材料的热物性参量测量变得尤为重要。首先介绍了飞秒激光测量微纳尺度下材料热物性参量的基本原理、测量系统的实现方法,对比了所采用的双温模型、双曲两步辐射模型、双曲一步模型、抛物一步模型、双相滞模型和抛物两步模型等主要的传热模型。其次,介绍了飞秒激光测量物性参量的基本特点。然后,介绍了单波长正面抽运与探测系统、双波长正面抽运及探测和加热探测不同侧3种常见结构的飞秒激光物性测量系统。最后,展望了飞秒激光物性测量的研究方向。
  • [1]

    ZHU J, TANG D W.Micro-structure thermal scanning and imaging system based on femto-second laser pump and probe thermoreflectance method[J]. Journal of Engineering Thermophysics, 2013, 34(6):1110-1113(in Chinese).
    [2]

    LIU J H, WANG H D, MA W G, et al. Experimental study of thermal and electrical properties of gold nanofilms at ultra low temperature[J]. Journal of Engineering Thermophysics, 2012, 33(11):1944-1946(in Chinese).
    [3]

    BORCA-TASCIUC T, CHEN G, KUMAR A R. Data reduction in 3 Omega method for thin-film thermal conductivity determination[J].Review of Scientific Instruments,2001,72(4):2139-2147.
    [4]

    GUO P, SU L Q, ZHENG X H,et al. Effective thermal-conductivity measurement on germanate glass-ceramics employing the 3 method at high temperature[J].International Journal of Thermophysics, 2014,35(2):336-345.
    [5]

    LI B Ch, POTTIER L,ROGER J P,et al. Complete thermal characterization of film-on-substrate system by modulated thermoreflectance microscopy and multiparameter fitting[J]. Journal of Applied Physics, 1999,86(5):5314-5316.
    [6]

    SHI L. Mesoscopic thermophysical measurement of microstructures and carbon nanotubes[D].California,USA:UC Berkeley,2001:68-119.
    [7]

    SCHMIDT A J. Optical characterization of the thermal transport from the nanoscale to the macroscale[D].Boston,Massachusetts,USA:Massachusetts Institute of Technology,2008:19-45.
    [8]

    PARKER W J, JENKINS R J, BUTLER C P.Flash method of determining thermal diffusivity,heat capacity,and thermal conductivity[J]. Journal of Applied Physics, 1961,32(9):1679-1684.
    [9]

    WANG X, HU H, XU X. Photo-acoustic measurement of thermal conductivity of thin films and bulk materials[J] Journal of Heat Transfer,2001,123(1):138-144.
    [10]

    LANGER G, HARTMANN J, REICHLING M. Thermal conductivity of thin metallic films measured by photothermal profile analysis[J]. Review of Scientific Instruments, 1997,68(3):1510-1513.
    [11]

    SHI B X,YIN H.Sheet using phase signals by photothermal transversal deflection method[J].Acta Photonica Sinica,2000,29(5):474-477(in Chinese).
    [12]

    SCHOENLEIN R W, LIN W Z, FUJIMOTO J G, et al. Femtosecond studies of nonequilibrium electronic processes in metals[J]. Physical Review Letters,1987,58(6):1680-1683.
    [13]

    ALLEN P B. Theory of thermal relaxation of electrons in metals[J]. Physical Review Letters,1987,59(13):1460-1463.
    [14]

    BRORSON S D,FUJIMOTO J G, IPPEN E P. Femtosecond electronic heat-transfer dynamics in thin gold films[J]. Physical Review Letters,1987,59(17):1962-1965.
    [15]

    KENJI G, TOSHIAKI I, ATSUSHI S, et al. Efficient deep-hole drilling by a femtosecond, 400nm second harmonic Ti:sapphire laser for a fiber optic in-line/pico-liter spectrometer[J]. Sensors and Actuators, 2015, B210(4):685-691.
    [16]

    AHMMED K M T, LING E J Y, SERVIR P, et al. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper[J]. Optics and Lasers in Engineering, 2015, 66(3):258-268.
    [17]

    SEE T L, LIU Z, LIU H, et al. Effect of geometry measurements on characteristics of femtosecond laser ablation of HR4 nickel alloy[J]. Optics and Lasers in Engineering,2015, 64(1):71-78.
    [18]

    OKHRIMCHUK A G, MEZENTSEV V K, LICHKOVA N V, et al. Femtosecond laser writing in the monoclinic RbPb2Cl5:Dy3+crystal[J]. Optical Materials,2015,43(5):1-5.
    [19]

    LEHR J, KIETZIG A M. Production of homogenous micro-structures by femtosecond laser micro-machining[J]. Optics and Lasers in Engineering,2014,57(6):121-129.
    [20]

    GAO Sh M, YAN K Zh, HAN P G,et al.Study on periodic structures on Si surface induced by femtosecond laser[J]. Laser Technology,2015,39(3):395-398(in Chinese).
    [21]

    MA W G, WANG H D, ZHANG X,et al.Theorectical and experimental study of femtosecond pulse laser heating on thin metal flm[J].Acta Physica Sinica,2011,60(6):064401(in Chinese).
    [22]

    ZHU J, TANG D W, WANG W, et al. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films[J]. Journal of Applied Physics,2010,108(9):094315.
    [23]

    ANISIMOV S I, KAPELIOVICH B L, PERELMAN T L. Electron emission from metal surface exposed to ultrashort laser pulses[J]. Zhurnal Eksperimental noii Teoreticheskoi Fiziki,1974,66(2):776-781.
    [24]

    QIU T Q, JUHASZ T, SUAREZ C,et al.Femtosecond laser heating of multi-layer metals-Ⅱ. Experiments[J].International Journal of Heat and Mass Transfer, 1994,37(17):2799-2808.
    [25]

    HAN F, YAN H, ZHOU H B,et al. Study on ablation of Ni film by ultrashort laser pulse-train[J].Laser Technology, 2013,37(4):478-482(in Chinese).
    [26]

    OU Y, YANG Q, DU G Q, et al. Ultrafast thermalisation dynamics in an Au film excited by a polarization-shaped femtosecond laser double-pulse[J]. Optics Laser Technology,2015,70(7):71-75.
    [27]

    DU G Q, CHEN F, YANG Q, et al. Ultrafast dynamics of high-contrast nano-grating formation on gold film induced by temporally shaped femtosecond laser[J]. Chemical Physics Letters,2014,597(3):153-157.
    [28]

    CHENA Ch Y, CHANG T L. Multilayered structuring of thin-film PV modules by ultrafast laser ablation[J]. Microelectronic Engineering,2015,143(3):41-47.
    [29]

    REN N F, GU J F, XU M L,et al.Research of thermodynamics in thin film irradiated by femtosecond laser[J]. Laser Technology,2010,34(5):708-711(in Chinese).
    [30]

    DENG S H, TAO X Y, LIU M P, et al.Thermal analysis of metal ablation by means of femtosecond-to-nanosecond laser pulses[J].Laser Technology,2007,31(1):4-7(in Chinese).
    [31]

    QIU T Q, TIEN C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. Journal of Heat Transfer,1993,115(4):835-841.
    [32]

    XIONG Q L, TIAN X G. Study of thermoelasticity of an mental film during laser heating[J].Chinese Journal of Solid Mechanics,2011,32(6):588-593(in Chinese).
    [33]

    ZHU J. Study on thermal transportation mechanism of nano-scale materials and interfaces by femtosecond laser pump and probe method[D].Beijing:School of Graduates, Chinese Academy of Sciences,2011:10-11(in Chinese).
    [34]

    MAURER M J. Relaxation model for heat conduction in metals[J].Journal of Applied Physics,1969,40(13):5123-5130.
    [35]

    QIU T Q, TIEN C L. Femtosecond laser heating of multilayer metals 1. Analysis[J]. International Journal of Heat and Mass Transfer,1994,37(17):2789-2797.
    [36]

    HAN P, TANG D W, CHENG G H,et al.An experimental investigation of energy transport of metal film[J].Journal of Engineering Thermophysics, 2008,29(2):297-300(in Chinese).
    [37]

    ZOU D Y. A unified field approach for heat conduction from macro-to micro-scales[J]. Journal of Heat Transfer,1995,117(1):8-16.
    [38]

    HAN P. Establishment of Femtosecond laser pump-probe thermoreflectance system and study on heat transport in metal films[D]. Beijing:School of Graduates, Chinese Academy of Sciences,2008:60-61(in Chinese).
    [39]

    BRORSON S D, FUJIMOTO J G, LPPEN E P. Femtosecond electronic heat-transport dynamics in thin gold films[J]. Physical Review Letters, 1987,59:1962-1965.
    [40]

    PENG Y J. Process of optical and thermal reaction of nanometallic Al composite nanoenergetic materials[D]. Harbin:Harbin Institute of Technology,2008:73(in Chinese).
    [41]

    HU J J. Study on the ultrafast dynamcs of the copper film by energetic partcles heat transport[D].Herbin:Heilongjiang University,2013:46-57(in Chinese).
    [42]

    JIA L, MA W G, ZHANG X.Experimental study of thermal conductivity of aluminum nanofilms[J]. Journal of Engineering Thermophysics,2014,35(6):1136-1139(in Chinese).
    [43]

    TSUNG W T, YUNG M L.Analysis of microscale heat transfer and ultrafast thermoelasticity in a multi-layered mental film with nonlinear thermal boundary resistance[J].International Journal of Heat and Mass Transfer,2013,62(4):87-98.
    [44]

    EESLEY G L. Observation of nonequilibrium electron heating in copper[J].Physical Review Letters,1983, 51(23):2140-2143.
    [45]

    KOMAROV P L, BURZO M G, KAYTAZ G, et al. Transient thermo-reflectance measurements of the thermal conductivity and interface resistance of metallized natural and isotopically-pure silicon[J].Microelectronics Journal,2003,34(12):1115-1118.
    [46]

    STEVENS R J, SMITH A N, NORRIS P M.Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique[J]. Journal of Heat Transfer,2005,127(3):315-322.
    [47]

    ALWI H A, KIM Y Y, AWANG R,et al. Measurement of thermophysical properties of hydrogenated amorphous carbon thin films using picosecond thermoreflectance technique[J]. International Journal of Heat and Mass Transfer,2013,63(15):199-203.
    [48]

    ZHU J, TANG D W, CHENG G H,et al.Foundation of femtosecond laser pump-probe thermoreflectance system[J]. Journal of Engineering Thermophysics, 2008,29(7):1227-1230(in Chinese).
    [49]

    SCHMIDT A J, CHIESA M, CHEN X, et al.An optical pump-probe technique for measuring the thermal conductivity of liquids[J]. Review of Scientific Instruments,2008,79(6):064902.
    [50]

    ZHU J, TANG D W.Two-color femto-second laser pump and probe thermoreflectance method measuring nano-film thermal conductivity and interface thermal conductance[J]. Journal of Engineering Thermophysics, 2012,33(7):1185-1189(in Chinese).
    [51]

    WANG H D, MA W G, GUO Z Y,et al.Experimental study of ultra-fast heat conduction process in metals using femtosecond laser thermal reflection method[J]. Journal of Engineering Thermophysics, 2011,32(3):465-468(in Chinese).
  • [1] 田润妮王俊波邱荣周强蒋勇杨永佳 . 纳秒和飞秒激光烧蚀单晶硅的超快诊断. 激光技术, 2015, 39(6): 765-768. doi: 10.7510/jgjs.issn.1001-3806.2015.06.007
    [2] 游牧赵卫程光华邹快盛 . 光敏玻璃在飞秒激光作用下的析晶. 激光技术, 2006, 30(1): 40-42,46.
    [3] 李士玲叶永凯 . 飞秒激光直写透明光学材料光波导的研究进展. 激光技术, 2012, 36(6): 783-787. doi: 10.3969/j.issn.1001-3806.2012.06.018
    [4] 张奇沈磊何博 . 飞秒激光在金属微加工中的应用. 激光技术, 2021, 45(4): 429-435. doi: 10.7510/jgjs.issn.1001-3806.2021.04.004
    [5] 于洪 . 飞秒激光脉冲宽度测量研究. 激光技术, 2013, 37(5): 679-681. doi: 10.7510/jgjs.issn.1001-3806.2013.05.025
    [6] 于海娟李港陈檬张丙元 . 飞秒激光加工过程中光学参数对加工的影响. 激光技术, 2005, 29(3): 304-307.
    [7] 肖海兵张庆茂谭小军周泳全张卫罗博伟 . 碳化硅陶瓷超快激光双光束精密抛光技术研究. 激光技术, 2024, 48(2): 180-187. doi: 10.7510/jgjs.issn.1001-3806.2024.02.006
    [8] 赵研英耿易星李荣凤 . 实时飞秒激光单次测量研究. 激光技术, 2017, 41(3): 342-345. doi: 10.7510/jgjs.issn.1001-3806.2017.03.008
    [9] 邓素辉陶向阳刘明萍周彩玉 . 飞秒-纳秒脉冲激光烧蚀金属热效应分析. 激光技术, 2007, 31(1): 4-7.
    [10] 梁德志王敏杜晨林伍晓宇 . 飞秒激光背部湿刻石英玻璃微通道的研究. 激光技术, 2017, 41(2): 174-177. doi: 10.7510/jgjs.issn.1001-3806.2017.02.005
    [11] 陈碧芳刘天夫 . 基于SPIDER法测量飞秒脉冲的数值计算与模拟. 激光技术, 2006, 30(1): 13-15.
    [12] 张建忠 . 超短光脉冲的频率分辨光学开关法测量研究. 激光技术, 2008, 32(2): 194-197.
    [13] 陈碧芳刘天夫 . 用干涉自相关包络宽度测量超短激光脉冲啁啾. 激光技术, 2010, 34(6): 851-854. doi: 10.3969/j.issn.1001-3806.2010.06.035
    [14] 刘文军李华军曲士良陈相君 . 飞秒激光脉冲的腔外压缩. 激光技术, 2007, 31(6): 665-667,670.
    [15] 尚艳丽陈海滨洪治 . 飞秒激光直写铒镱玻璃波导激光器的优化设计. 激光技术, 2009, 33(3): 279-282.
    [16] 王志军贾威倪晓昌彭志农杨丽王清月 . 飞秒激光烧蚀金属镍热影响区的数值模拟. 激光技术, 2007, 31(6): 578-580.
    [17] 李纲卢峰朱斌吴玉迟谷渝秋 . 波前像差对超短飞秒激光脉冲聚焦特性的影响. 激光技术, 2020, 44(1): 14-19. doi: 10.7510/jgjs.issn.1001-3806.2020.01.003
    [18] 任乃飞顾佳方许美玲罗艳江杰陈秋月 . 飞秒激光作用下薄膜的热力学研究. 激光技术, 2010, 34(5): 708-711. doi: 10.3969/j.issn.1001-3806.2010.O5.036
    [19] 艾尼江·阿塔伍拉阿布都热苏力·阿不都热西提 . 基于高斯光束的飞秒激光光束质量检测技术. 激光技术, 2019, 43(6): 846-849. doi: 10.7510/jgjs.issn.1001-3806.2019.06.021
    [20] 邹华朱卫华吴坚吴建伟王国栋 . 达曼类滤波器的飞秒脉冲整形技术. 激光技术, 2009, 33(4): 374-376,380. doi: 10.3969/j.issn.1001-3806.2009.04.011
  • 加载中
计量
  • 文章访问数:  2733
  • HTML全文浏览量:  689
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-05
  • 录用日期:  2015-10-08
  • 刊出日期:  2016-07-25

飞秒激光测量微纳材料热物性参量研究进展

    作者简介: 夏胜全(1982-),男,博士,工程师,目前主要从事高能束焊接及应用、数值模拟等研究。E-mail:xiashengquan2001@163.com
  • 1. 中国工程物理研究院 材料研究所, 绵阳 621900

摘要: 随着微纳加工技术的发展,微纳尺度下材料的热物性参量测量变得尤为重要。首先介绍了飞秒激光测量微纳尺度下材料热物性参量的基本原理、测量系统的实现方法,对比了所采用的双温模型、双曲两步辐射模型、双曲一步模型、抛物一步模型、双相滞模型和抛物两步模型等主要的传热模型。其次,介绍了飞秒激光测量物性参量的基本特点。然后,介绍了单波长正面抽运与探测系统、双波长正面抽运及探测和加热探测不同侧3种常见结构的飞秒激光物性测量系统。最后,展望了飞秒激光物性测量的研究方向。

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回