高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态单频激光技术

李慧 王志敏 张丰丰 王明强 李家佳 崔大复 彭钦军 许祖彦

引用本文:
Citation:

全固态单频激光技术

    作者简介: 李慧(1989-),女,硕士研究生,现主要从事固体激光器方面的研究。.
    通讯作者: 王志敏, wangzmok@163.com
  • 基金项目:

    国家重大科研装备研制项目资助项目(ZDYZ2012-2);国家重大科学仪器设备开发专项资助项目(2012YQ120048);国家自然科学基金资助项目(61138004)

  • 中图分类号: TN248.1

Single-frequency all-solid-state laser technology

    Corresponding author: WANG Zhimin, wangzmok@163.com ;
  • CLC number: TN248.1

  • 摘要: 全固态单频激光器在高分辨率激光光谱学、相干通信、激光雷达、引力波探测等方面的重要应用,成为全固态激光器研究的一个重要方向。概述了几种获得全固态单频激光器的方法,主要有短腔法、耦合腔法、双折射滤光片法、光栅选频法、插入标准具法、单向环形腔法、扭转模腔法等。介绍了不同方法实现单频的基本原理及国内外进展,总结比较了它们各自的优缺点和适用范围,为不同的单频激光应用需求提供了不同的单频技术手段。
  • [1]

    ZHOU B K, GAOY Z, CHEN T R, et al .Principles of laser [M].6th ed. Beijing: National Defense Industry Press, 2008: 212 (in Chinese).
    [2]

    ZAYHOWSKI J J, MOORADIAN A. Single-frequency microchip Nd lasers[J]. Optics Letters, 1989, 14(1):24-26.
    [3]

    TAIRA T, MUKAI A, NOZAWA Y K, et al. Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers[J]. Optics Letters, 1991, 16(24): 1955-1957.
    [4]

    SHAN Zh G, SHEN X H, HUANG G S, et al. Single longitudinal mode operation of LD pumped Nd:YAG microchip laser[J]. Laser Infrared, 1993, 23(6):22-23 (in Chinese).
    [5]

    GAVRILOVIC P, ONEILL M S, ZARRABI J H, et al. High-power, single-frequency diode-pumped Nd:YAG microcavity lasers at 1.3m[J]. Applied Physics Letters, 1994, 65(13):1620-1622.
    [6]

    GAO Ch Q, LI J Z, WEI G H. LD-pumped single-frequency seeding lasers and the linewidth measurement[J]. Optical Technique, 2000, 26(6): 546-547 (in Chinese).
    [7]

    LIN Z, GAO Ch Q, GAO M, et al. Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters[J]. Applied Physics, 2009, B94(1): 81-84.
    [8]

    LI G, YAO B Q, ZHANG C H, et al .Diode pumped operation of Tm,Ho:YVO4 microchip laser[J]. Chinese Physics Letters, 2010, 27(3):034201.
    [9]

    MENG L, PAN Z Q, GENG J X, et al. A short-cavity phosphate glass fiber laser and its output characteristics [J]. Chinese Journal of Lasers, 2010, 37(2): 362-366 (in Chinese).
    [10]

    [ZK(#]ZHANG W N, LI C, FENG Z M, et al. Short cavity single frequency fiber laser at 1080nm based on highly Yb3+-doped phosphate fiber [J]. Laser Optoelectronics Progress, 2012, 49(10):100601 (in Chinese) .
    [11]

    YANG F, CHEN D J, PAN Z Q, et al. short liner cavity single-frequency fiber laser with active frequency stabilization by fiber Bragg grating [J]. Chinese Journal of Lasers, 2012, 39(9): 0902005 (in Chinese).
    [12]

    CHEN Y F, HUANG T M, WANG C L, et al. Theoretical and experimental studies of single-mode operation in diode pumped Nd:YVO4/KTP green laser: influence of KTP length[J]. Optics Communications, 1998, 152(4/6):319-323.
    [13]

    ZHENG Q, ZHAO L. Study of a diode pumped single frequency Nd:YVO4 laser at 1064nm[J]. Optical Technique, 2003, 29(6):675-676 (in Chinese).
    [14]

    WANG J Y, ZHENG Q, XUE Q H, et al.A watt level single frequency green laser obtained by birefringent filter technique[J]. Acta Photonica Sinica, 2005, 34(3):321-324(in Chinese) .
    [15]

    XING J H, JIAO M X, LIU Y. Design and experimental study of electro-optically tunale single frequency Nd:YAG laser at 1064nm[J]. Chinese Journal of Lasers, 2014, 41(3):0302007 (in Chinese) .
    [16]

    GAO L L, TAN H M. LD-pumped all-solid-state single-frequency laser technique [J]. OME Information, 2002, 9(11):8-11 (in Chinese).
    [17]

    ZHOU F, FERGUSON A I. Tunable single frequency operation of a diode laser pumped Nd:YAG microchip at 1.3m[J]. Electronics Letters,1990, 26(1): 490-493.
    [18]

    PEDERSEN C, HANSEN P L, SKETTRUP T, et al. Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators[J]. Optics Letters, 1995,20(12):1389-1391.
    [19]

    HARA H, WALSH B M, BARNES N P. Tunability of a 946nm Nd:YAG microchip laser by use of a double-cavity configuration[J].Applied Optics, 2004,43(15):3171-3173.
    [20]

    LI J, YANG S H, ZHAO C M, et al. High efficient single-frequency output at 1991nm from a diode-pumped Tm:YAP coupled cavity[J]. Optics Express, 2010,18(12):12161-12167.
    [21]

    LITTMAN M G, METCALF H J. Spectrally narrow pulsed dye laser without beam expander [J]. Applied Optics, 1978, 17(14):2224-2227.
    [22]

    KANGAS K W, LOWENTHAL D D, MULLER Ⅲ C H. Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator[J].Optics Letters, 1989,14(1):21-23.
    [23]

    SHAO Z X. High efficiency SLM Littman configuration Ti:sapphire laser system[J]. Chinese Jouranal of Lasers, 1994,21(9):717-720(in Chinese).
    [24]

    KO D K, LIM G, KIM S H, et al. Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator[J]. Optics Letters, 1995, 20(7): 710-712.
    [25]

    MERRIAM A J, YIN G Y. Efficient self-seeding of a pulsed Ti3+:Al2O3 laser [J]. Optics Letters, 1998, 23(13):1034-1036.
    [26]

    WANG R, WANG N, TENG H, et al. High-power tunable narrow-line with Ti:sapphire laser at repetition rate of 1kHz [J]. Applied Optics, 2012,51(22):5527-5530.
    [27]

    WEI F, CHEN D J, XIN G F, et al. A compact and rugged tunable external cavity diode laser with Littman-Metcalf configuration [J]. Chinese Jouranal of Lasers, 2013, 40(11):1102012 (in Chinese).
    [28]

    XU H Z, QIU Y S, XU B. Wavelength tuning characteristic improvement of external cavity diode lasers[J]. Journal of Applied Optics, 2008,29(6):975-977 (in Chinese).
    [29]

    ZHANG X L, JUY L, WANG Y Z. Diode-pumped single frequency Tm,Ho:YLF laser at room temperature[J]. Chinese Optics Letters, 2005, 3(8): 463-465.
    [30]

    YAO B Q, KE L, DUAN X M, et al. Stable wavelength narrow linewidth diode pumped Tm:YLF laser with double etalons[J]. Laser Physics Letters, 2009, 6(8):563-566.
    [31]

    YAO B Q, LIU X L, YU L X, et al. Resonantly pumped single frequency Er:YAG laser at 1645nm[J]. Laser Physics, 2012, 22(2):403-405.
    [32]

    ZHU L N, GAO Ch Q, WANG R,et al. Resonantly pumped 1.645m single longitudinal mode Er:YAG laser with intracavity etalons[J].Applied Optics, 2012, 51(10):1616-1618.
    [33]

    ZHU L N, GAO Ch Q, WANG R, et al. Fiber-bulk hybrid Er:YAG laser with 1617nm single frequency laser output[J]. Laser Physics Letters, 2012, 9(9):674-677.
    [34]

    WANG L, GAO C Q, GAO M W, et al. Diode-pumped 2m tunable single-frequency Tm:LuAG laser with intracavity etalons[J]. Applied Optics, 2013,52(6): 1272-1275.
    [35]

    KANE T J, BYER R L. Monolithic, unidirectional single-mode Nd:YAG ring laser[J]. Optics Letters, 1985, 10(2):65-67.
    [36]

    ZANG E J, CAO J P, LI C Y. The study of solid state monolithic semi-nonplanar ring laser[J]. Advanced Measurement and Laboratory Management, 2004, 12(1):19-22(in Chinese) .
    [37]

    ZIMER H, WITTROCK U. 1.6W of single-mode output power from a novel power-scaling scheme for monolithic nonplanar ring lasers[J]. Optics Letters, 2004,29(14):1635-1637.
    [38]

    ZHAO Y, GAO Ch Q, CAO Y L, et al. Study on laser-diode-pumped 1319nm single frequency laser tuning and noise suppression[J]. Laser Technology, 2004, 28(5):466-468(in Chinese).
    [39]

    YAO B Q, DUAN X M, FANG D, et al.7.3W of single-frequency output power at 2.09m from an Ho:YAG monolithic nonplanar ring laser[J]. Optics Letters, 2008, 33(18):216-2163.
    [40]

    WANG R, GAO C Q, ZHENG Y, et al. A resonantly pumped 1645nm Er:YAG nonplanar ring oscillator with 10.5W single frequency output[J].IEEE Photonics Technology Letters, 2013,25(10): 955-957.
    [41]

    WANG L, GAO Ch Q, GAO M W, et al. Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122nm[J]. Optics Express, 2013, 21(8):9541-9546.
    [42]

    ZHAO J Y, ZHANG K S. LD dual-end-pumped high power CW single- frequency Nd:YVO4 laser [J]. Acta Sinica Quantum Optica, 2004, 10(2):87-92 (in Chinese).
    [43]

    SHARDLOW P C, DAMZEN M J. High efficiency 17W single frequency ring laser with feedback mirror[C]//European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. New York, USA:IEEE, 2009:1.
    [44]

    WANG Zh Y. Investigation of 880nm LD pumped high power CW single- frequency Nd:YVO4 laser [D]. Taiyuan: Shanxi University, 2011:30-35(in Chinese) .
    [45]

    XIE S Y, BO Y, XU J L, et al. A high power single frequency diode side-pumped Nd:YAG ring laser[J]. Chinese Physics Letters, 2011, 28(8):084207.
    [46]

    LUH D, SU J, ZHENG Y H, et al. Physical conditions of single-longitudinal-modeoperation for high-power all-solid-state lasers[J]. Optics Letters, 2014,39(5):1117-1120.
    [47]

    WANG P Y, XIE S Y, BO Y, et al. 33W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics, 2014, B23(9): 094208.
    [48]

    EVTUHOV V, SIEGMAN A E. A twisted-mode technique for obtaining axially uniform energy density in a laser cavity[J]. Applied Optics, 1965, 4(1):142-143.

    [JP2]WU E, PAN H, ZHANG S, et al. High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4[JP] crystal[J]. Applied Physics, 2005, B80(4):459-462.
    [50]

    HAO E J, LI T, TAN H M, et al. Single frequency laser at 473nm by twisted mode technique[J]. Laser Infrared, 2009, 39(9): 924-927 (in Chinese) .
    [51]

    ZHANG Y, GAO Ch Q, GAO M, et al. A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique[J]. Laser Physics Letters, 2010, 7(1): 17-20.
    [52]

    GAO Ch Q, WANG R, LIN Z, et al. 2m single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity[J]. Applied Physics, 2012, B107(1):67-70.
  • [1] 魏兴春欧攀张春熹贾豫东李大伟 . 单频单偏振窄线宽光纤激光器及其放大研究. 激光技术, 2010, 34(1): 5-7,29. doi: 10.3969/j.issn.1001-3806.2010.01.002
    [2] 梁勇姚志健 . 红外波段全固态单频激光器研究进展. 激光技术, 2013, 37(1): 85-88. doi: 10.7510/jgjs.issn.1001-3806.2013.01.021
    [3] 龙江雄李刚杨彬姚红权丁建永周军 . 种子注入的高峰值功率全固态单频激光器. 激光技术, 2019, 43(3): 291-294. doi: 10.7510/jgjs.issn.1001-3806.2019.03.001
    [4] 江鹏飞赵伟瑞张静娟谢福增 . 窄线宽的外腔半导体激光器. 激光技术, 2004, 28(2): 160-161.
    [5] 刘晓娟魏功祥周柏君赵翔 . 1120nm窄线宽掺镱光纤激光器. 激光技术, 2016, 40(3): 349-352. doi: 10.7510/jgjs.issn.1001-3806.2016.03.010
    [6] 李川陈安涛赵文娟韩一平 . 三谱线、高峰值功率窄线宽纳秒光纤激光器. 激光技术, 2019, 43(6): 753-756. doi: 10.7510/jgjs.issn.1001-3806.2019.06.004
    [7] 田明王菲车英 . 双波长腔外同步和频355nm准连续全固态激光器. 激光技术, 2014, 38(6): 804-806. doi: 10.7510/jgjs.issn.1001-3806.2014.06.017
    [8] 朱志坚薛竣文王玉珂孙鲁苏秉华 . 基于MOPA结构的1064nm单频光纤激光器. 激光技术, 2019, 43(6): 800-803. doi: 10.7510/jgjs.issn.1001-3806.2019.06.013
    [9] 何幸锴侯辉冯力天伍波沈琪浩侯天晋兰戈周鼎富 . 1550nm单频脉冲光纤激光放大器实验研究. 激光技术, 2011, 35(2): 145-147,151. doi: 10.3969/j.issn.1001-3806.2011.02.001
    [10] 李尚义张盛伏 . 一种自稳频大功率单频He-Ne激光器的功率估算. 激光技术, 1998, 22(6): 357-361.
    [11] 赵严高春清曹一磊李家泽魏光辉 . LD抽运1319nm单频激光器的调谐和噪声抑制研究. 激光技术, 2004, 28(5): 466-468.
    [12] 李尚义 . 二种单频外腔式He-Ne激光器的自稳频原理再分析. 激光技术, 1995, 19(1): 1-5.
    [13] 王君立王云鹏李大一于前洋檀慧明 . 全固态激光器的数字式光反馈控制驱动电源. 激光技术, 2004, 28(3): 306-308.
    [14] 史彭李隆甘安生李东亮白晋涛 . 全固态激光器中掺Nd3+离子激光晶体热效应的研究. 激光技术, 2004, 28(2): 177-180.
    [15] 杨春波冷进勇陆启生 . 掺Yb3+双包层单频光纤放大器中SBS的理论分析. 激光技术, 2011, 35(1): 117-121. doi: 10.3969/j.issn.1001-3806.2011.01.032
    [16] 马泳林宏冀航董天临 . 基于边缘探测技术的激光单稳频指标分析. 激光技术, 2007, 31(5): 469-472.
    [17] 王可宁刘允雷陈海滨郭子龙 . 移频延时自外差法的DFB激光器线宽测量. 激光技术, 2018, 42(5): 633-637. doi: 10.7510/jgjs.issn.1001-3806.2018.05.010
    [18] 吕国瑞卞进田温佳起孔辉徐海萍郭磊王荣庆 . 窄谱宽中红外激光技术研究进展. 激光技术, 2023, 47(6): 742-750. doi: 10.7510/jgjs.issn.1001-3806.2023.06.003
    [19] 李玉文李斌王靖田魏艳玲曹思维 . 高效高峰值功率全固态355nm紫外激光器. 激光技术, 2010, 34(2): 265-267,271. doi: 10.3969/j.issn.1001-3806.2010.02.033
    [20] 张延超孙兰君付石友刘立宝田兆硕 . 高重频可调小型高功率半导体激光电源研究. 激光技术, 2012, 36(6): 731-734. doi: 10.3969/j.issn.1001-3806.2012.06.005
  • 加载中
计量
  • 文章访问数:  10123
  • HTML全文浏览量:  7460
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-17
  • 录用日期:  2015-03-20
  • 刊出日期:  2016-01-25

全固态单频激光技术

    通讯作者: 王志敏, wangzmok@163.com
    作者简介: 李慧(1989-),女,硕士研究生,现主要从事固体激光器方面的研究。
  • 1. 北京理工大学光电学院, 北京 100081;
  • 2. 中国科学院理化技术研究所, 北京 100190
基金项目:  国家重大科研装备研制项目资助项目(ZDYZ2012-2);国家重大科学仪器设备开发专项资助项目(2012YQ120048);国家自然科学基金资助项目(61138004)

摘要: 全固态单频激光器在高分辨率激光光谱学、相干通信、激光雷达、引力波探测等方面的重要应用,成为全固态激光器研究的一个重要方向。概述了几种获得全固态单频激光器的方法,主要有短腔法、耦合腔法、双折射滤光片法、光栅选频法、插入标准具法、单向环形腔法、扭转模腔法等。介绍了不同方法实现单频的基本原理及国内外进展,总结比较了它们各自的优缺点和适用范围,为不同的单频激光应用需求提供了不同的单频技术手段。

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回