高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超分辨率重构复眼成像技术的研究进展

胡江涛 黄峰 张雏 刘秉琦 王元铂

引用本文:
Citation:

超分辨率重构复眼成像技术的研究进展

    作者简介: 胡江涛(1989-),男,硕士研究生,主要研究方向为光电仪器设计及应用。.
    通讯作者: 张雏, zhangchu625@sina.com
  • 中图分类号: TN911.74

Research status of super resolution reconstruction based on compound-eye imaging technology

    Corresponding author: ZHANG Chu, zhangchu625@sina.com ;
  • CLC number: TN911.74

  • 摘要: 超分辨率图像重构复眼成像将超分辨率重构技术与复眼成像技术相结合。复眼成像系统获取低分辨率图像,超分辨率重构算法计算获取高分辨率图像。总结了超分辨率图像重构复眼成像的研究现状,介绍了复眼图像超分辨率重构的基本原理和现阶段主要成像系统。结合成像模型角度,分析了常用的复眼图像超分辨率重构算法,以及定量测试评价与视觉角度评价的主要方法。为深入研究超分辨率图像重构复眼成像提供了参考。
  • [1]

    TANG Ch X, WU Zh Ch, LIANG Zh. Design and experiment of artificial compound eye receiving system[J] Optics and Precision Engineering, 2011, 19(5):992-997(in Chinese).
    [2]

    JIANG X P. A GRIN micro lens array with hexagonal aperture simulated compound eyes buried in a convex[D]. Suzhou: Soochow University, 2011:11-18(in Chinese).
    [3]

    LIU J. Imaging system of multiple aperture overlap ommateum[D]. Beijing: Beijing Institute of Technology, 2012:1-12 (in Chinese).
    [4]

    ZHANG X Y. The structural design and experimental investigations of multi-aperture overlap bionic compound eye[D]. Beijing: Beijing Institute of Technology, 2012:1-11(in Chinese).
    [5]

    HUANG Z X, XUN G L. Research on panorama picture formation in bionic compound eye measuring system[J]. Metrology Measurement Technology, 2006, 26(1): 17-18 (in Chinese).
    [6]

    LEE H, DALTON G B, TOSH I A J, et al. Computer-guided alignment III: description of inter-element alignment effect in circular-pupil optical system[J].Optics Express, 2008,16(15):10992-11006.
    [7]

    TOYGAR A, YUCEL A, RUSSELL M M. Super-resolution reconstruction of hyperspectral images[J].IEEE Transactions on Image Processing,2005, 14(11):1860- 1875.
    [8]

    GONG Zh W, YU W X, ZHANG H X, et al. Process in design and fabrication of the artificial compound eye optics system[J].Chinese Optics, 2013,6(1):34-45 (in Chinese).
    [9]

    PATTI A J, SEZAN M I, TEKALP A M. Super resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J]. IEEE Transactions on Image Processing, 1997,6(8): 1064-1076.
    [10]

    VIKRANT R B, MANJUNATH S, SCOTT C D, et al. Experimentally validated computational imaging with a adaptive multi aperture folded architecture[J]. Applied Optics, 2010, B49(10): 51-58.
    [11]

    ESMAEIL F, VIKRANT R B, DINESH R, et al. Super resolution results in PANOPTES, and adaptive multi-aperture folded architecture[C]//IEEE 17th International Conference on Image Processing. New York,USA:IEEE,2010:2833-2836.
    [12]

    GUILLEM C, JAMES D, ANDREW R H. Super-resolution imaging using a camera array [J]. Optics Letters, 2014, 39(7): 1-5.
    [13]

    CHAN W S, MICHAEL K N, EDMUND Y L, et al. Super-resolution reconstruction in a computational compound-eye imaging system[J]. Multidimensional Systems Signal Processing, 2007, 18(2/3): 83-101.
    [14]

    YU H, CHEN H W. Research progress of image super-resolution technology[J]. Optics Optoelectronic Technology, 2012, 10(5): 45-50 (in Chinese).
    [15]

    WANG N. Reconstruction of super-resolution depth image based on compressive and development of camera array[D]. Guangzhou: South China University of Technology, 2010:8-15 (in Chinese).
    [16]

    XU P Y. Research on the super resolution reconstruction[D]. Shanghai: Shanghai Jiaotong University, 2009:1-10(in Chinese).
    [17]

    ZHANG Y. Research on the superresolution image reconstruction technique in space domain[D]. Beijing: China University of Information Engineering, 2007:11-23(in Chinese).
    [18]

    HOU T X. Study of super-resolution image reconstruction algorithm[D]. Taiyuan: Shanxi University, 2011:11-26(in Chinese).
    [19]

    DONG L. Study of super-resolution image reconstruction algorithm[D]. Taiyuan: Shanxi University, 2011:10-20(in Chinese).
    [20]

    SHI W, TIAN Y, LIU J. A fast super-resolution reconstruction from image-sequence[J]. Wuhan University Journal of Natural Sciences,2006,11(2):399-404.
    [21]

    CHEN Y. Research on super resolution image reconstruction algorithm based on nonuniform/uncontrolled micro-scanning[D]. Beijing: Beijing Institute of Technology, 2011: 22-36(in Chinese).
    [22]

    OU P, LIU X, SUN M J, et al. A large step method of optical micro scanning [J]. Laser Technology,2013, 37(3):293-296(in Chinese).
    [23]

    LEONID A, EVGENII N, JACOB K. Super-resolution imaging via spatiotemporal frequency shifting and coherent detection[J]. Optics Express, 2011,19(22):22350-22357.
    [24]

    BOWEN A, BINGBIN X, SHENGDA P, et al. Sub-pixel processing for super-resolution scanning imaging system with fiber bundle coupling[J]. Chinese Optics Letters, 2011, 9(8): 081001.
    [25]

    AGGELOS K K, RAFAEL M, JAVIER M. Super resolution of images and video[R].Houston, Texas, USA: Morgan Claypool, 2007:87-89.
    [26]

    LIU Ch Y, NI L. Improved block-matching and initial estimation for POCS image reconstruction[J]. Journal of Data Acquisition Processing, 2013,28(1):47-52 (in Chinese).
    [27]

    XIAO J X. A POCS Algorithm for super-resolution image reconstruction[D]. Shanghai: Shanghai Jiaotong University, 2009:11-23(in Chinese).
    [28]

    ZHANG D, PENG H. Noise analysis and reduction in the super-resolved image[J]. Journal of Shaoguan University (Natural Science Edition), 2006, 27(12): 31-34(in Chinese).
    [29]

    CHEN B Y, GUO Q, CHEN G L, et al. Amplificatory noise raised by super resolution reconstruction and filter[J].Infrared Millimeter Waves, 2011,30(1):15-20 (in Chinese).
  • [1] 李强刘哲南炳炳顾淑音 . 改进的基于邻域嵌入的图像超分辨率重构. 激光技术, 2015, 39(1): 13-18. doi: 10.7510/jgjs.issn.1001-3806.2015.01.003
    [2] 林巧文杨春花刘红梅康占成 . 基于微球透镜远场超分辨率成像方法研究. 激光技术, 2021, 45(6): 686-690. doi: 10.7510/jgjs.issn.1001-3806.2021.06.002
    [3] 李达李云霞蒙文韩晓飞 . 低慢小目标面阵推进式激光成像探测方法研究. 激光技术, 2014, 38(1): 44-48. doi: 10.7510/jgjs.issn.1001-3806.2014.01.010
    [4] 韩宏伟张晓晖葛卫龙 . 一种用于水下距离选通成像的变步长扫描方法. 激光技术, 2011, 35(2): 226-229,259. doi: 10.3969/j.issn.1001-3806.2011.02.023
    [5] 王云鹏刘力双刘洋 . 鱼眼成像系统标定技术研究. 激光技术, 2024, 48(1): 77-82. doi: 10.7510/jgjs.issn.1001-3806.2024.01.013
    [6] 马志明王晓玲周哲海 . 基于LED照明的时域全场OCT成像系统设计. 激光技术, 2023, 47(2): 280-285. doi: 10.7510/jgjs.issn.1001-3806.2023.02.019
    [7] 陈均溢商思航苗丹江财俊曾延安 . 光电成像系统的绝对光谱响应效率测量及分析. 激光技术, 2021, 45(1): 121-125. doi: 10.7510/jgjs.issn.1001-3806.2021.01.021
    [8] 徐帅朱启兵黄敏 . 手持式食品残留物荧光成像检测系统开发. 激光技术, 2023, 47(6): 872-880. doi: 10.7510/jgjs.issn.1001-3806.2023.06.021
    [9] 雷选华杨克成 . 一种基于FPGA水下激光成像系统的同步控制器. 激光技术, 2010, 34(5): 682-685. doi: 10.3969/j.issn.1001-3806.2010.O5.029
    [10] 沈淦松叶玉堂李昌海 . 一种高分辨率ITO线路缺陷检测系统. 激光技术, 2013, 37(1): 24-27. doi: 10.7510/jgjs.issn.1001-3806.2013.O1.006
    [11] 刘大通刘洋刘力双 . 红外回扫补偿系统图像退化评价方法的研究. 激光技术, 2024, 48(1): 121-126. doi: 10.7510/jgjs.issn.1001-3806.2024.01.019
    [12] 夏春蕾郑刚戴曙光 . 大景深成像技术及其相移现象的控制. 激光技术, 2008, 32(2): 159-162.
    [13] 汪靓杨宇黄敏朱启兵 . 基于偏振成像技术的油桃机械损伤检测. 激光技术, 2022, 46(6): 841-849. doi: 10.7510/jgjs.issn.1001-3806.2022.06.021
    [14] 王骐迟欣李琦 . 太赫兹自由电子激光器的成像原理及进展. 激光技术, 2006, 30(6): 643-646.
    [15] 李芮李晓王志斌黄艳飞王耀利张瑞 . 阵列探测器在成像光谱偏振探测技术中的应用. 激光技术, 2014, 38(6): 822-825. doi: 10.7510/jgjs.issn.1001-3806.2014.06.021
    [16] 吴舒哲唐嘉熊亮黄佐华 . 一种基于共轴干涉的相位物体定量成像技术. 激光技术, 2017, 41(2): 275-279. doi: 10.7510/jgjs.issn.1001-3806.2017.02.026
    [17] 陈德章张华冷杰高建波路英宾陶刚郭嘉伟李萧 . 基于APD面阵探测器的非扫描激光主动成像雷达. 激光技术, 2017, 41(6): 775-778. doi: 10.7510/jgjs.issn.1001-3806.2017.06.001
    [18] 薛璐胡文静徐彬刘学峰姚政鹏陈智龙黄益俊熊吉川 . 基于偏振参数非直观光学成像的鼻唇沟量化表征. 激光技术, 2023, 47(4): 572-578. doi: 10.7510/jgjs.issn.1001-3806.2023.04.020
    [19] 王聪毅高向东马女杰张艳喜游德勇 . 激光焊接缺陷多向磁场激励下磁光成像检测. 激光技术, 2020, 44(5): 592-599. doi: 10.7510/jgjs.issn.1001-3806.2020.05.011
    [20] 欧攀刘星孙鸣捷于康龙王治权 . 一种大步长的光学微扫描方法. 激光技术, 2013, 37(3): 293-296. doi: 10.7510/jgjs.issn.1001-3806.2013.03.005
  • 加载中
计量
  • 文章访问数:  6631
  • HTML全文浏览量:  3858
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-01
  • 录用日期:  2014-11-10
  • 刊出日期:  2015-07-25

超分辨率重构复眼成像技术的研究进展

    通讯作者: 张雏, zhangchu625@sina.com
    作者简介: 胡江涛(1989-),男,硕士研究生,主要研究方向为光电仪器设计及应用。
  • 1. 军械工程学院 电子与光学工程系, 石家庄 050003

摘要: 超分辨率图像重构复眼成像将超分辨率重构技术与复眼成像技术相结合。复眼成像系统获取低分辨率图像,超分辨率重构算法计算获取高分辨率图像。总结了超分辨率图像重构复眼成像的研究现状,介绍了复眼图像超分辨率重构的基本原理和现阶段主要成像系统。结合成像模型角度,分析了常用的复眼图像超分辨率重构算法,以及定量测试评价与视觉角度评价的主要方法。为深入研究超分辨率图像重构复眼成像提供了参考。

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回