高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构光测量系统的标定方法综述

刘顺涛 骆华芬 陈雪梅 徐静

引用本文:
Citation:

结构光测量系统的标定方法综述

    作者简介: 刘顺涛(1981-),男,博士,现主要从事3维测量的研究。E-mail:29131246@qq.com.
  • 基金项目:

    国家自然科学基金资助项目(51105218);教育部博士点基金资助项目(20110002120053)

  • 中图分类号: TN247

Review of calibration method for structured light measurement

  • CLC number: TN247

  • 摘要: 结构光测量技术具有无接触、测量速度快、测量精度较高且成本较低等优点而被广泛应用到各个领域。结构光测量系统的精度取决于系统标定精度。综述了结构光测量系统的现有标定方法,即基于矩阵变换的摄影测量法、基于几何关系的三角测量法和多项式拟合法。摄影测量法可以进一步分为伪相机法、逆向相机法和光平面法。从误差扩散、对投影仪标定的依赖性、精密辅助标定装置、操作复杂度等方面对上述标定方法进行了对比。指出标定方法的研究趋势是从实验室方法向现场标定技术的转变,要求标定装置简单、标定过程便捷、标定时间快速且精度高。
  • [1]

    WANG L, BO M, GAO J, et al. Fast 3-D surface information acquisition based on smart camera. Laser Technology, 2006, 30(6): 657-660(in Chinese).
    [2]

    GAO Sh Y, YANG Y Q, YANG K Zh. Defect detection of laser welding seamof unequal-thickness blank baed on structured light vision.Laser Technology, 2011, 35(4): 440-443(in Chinese).
    [3]

    ZHANG Q C, SU X Y, ZOU X P. Calibration of 3-D measurement system using multi-sensor with line structured-illuminated laser.Laser Technology, 2005, 29(3): 225-232(in Chinese).
    [4]

    XIAO Y Sh, SU X Y, ZHANG Q C, et al. 3-D surface shape restoration for the breaking surface of dynamic process.Laser Technology, 2006, 30(3): 258-261(in Chinese).
    [5]

    CAO S P, WANG W F, XUE X Ch. Dynamic 3-D shape measurement based on de-interlaced images by Fourier transform.Laser Technology,2013, 37(6):736-741(in Chinese).
    [6]

    CHEN Y J, ZUO W M, WANG K Q, et al. Survey on structured light pattern codification methods.Journal of Chinese Computer Systems, 2010,31(9): 1856-1863(in Chinese).
    [7]

    SALVI J, FERNANDEZ S, PRIBANIC T, et al. A state of the art in structured light patterns for surface profilometry.Pattern Recognition, 2010, 43(8): 2666-2680.
    [8]

    PARK S C, CHANG M. Reverse engineering with a structured light system.Computers & Industrial Engineering, 2009, 57(4):1377-1384.
    [9]

    SHI Y S, LI Zh W, ZHONG K, et al. Structure light 3-D measurement technology and its application in mould & die design and manufacturing.Aeronautical Manufacturing Technology, 2009, 20: 48-50.
    [10]

    ZHANG J Q, ZHENG L. 3-D surface reconstruction of irregular industrial sheetmetal parts based on structure illumination.Geospatial Information, 2004, 2(6): 9-10(in Chinese).
    [11]

    HE Z R, CAI Y B. Experimental research of broken sheet metal surface reconstruction based on structure light.Research and Exploration in Laboratory, 2010, 31(10): 28-32(in Chinese).
    [12]

    WU X Q, FENG L F, HUI Y B, et al. Digital method of cultural relics based on measuring of structured light.Machinery Design & Manufacture, 2009(9):212-214(in Chinese).
    [13]

    XIONG Y Y, CHEN X B, SUN J, et al. Development of three dimensional facial measurement system based on structured light projection.Journal of Shanghai Jiaotong University(Medical Science Edition), 2009, 29(7): 837-841(in Chinese).
    [14]

    LI Z N, CHEN Zh X, WANG L M, et al. A measuring method of soil surface roughness using infrared structured light 3-D technology.Transactions of the Chinese Society of Agricultural Engineering, 2013,29(21):137-142(in Chinese).
    [15]

    LI Q,HE D G,LI X. A study on visual measurement method based on underwater 3-dimension structured light.Journal of Dalian Ocean University, 2012, 27(6): 583-586(in Chinese).
    [16]

    WU L J, LIU G H, LIU X Y, et al. Shiny surfaces measurement based on structured light system.Tool Engineering, 2011,45(3): 88-92(in Chinese).
    [17]

    ZHANG Q C, SU X Y, CAO Y P, et al. Three-dimensional shape measurement for rotating blade using stroboscopic structured illumination. Acta Optica Sinica, 2005,25(2): 207-211(in Chinese).
    [18]

    ZHANG S, HUANG P S. Novel method for structured light system calibration.Optical Engineering, 2006, 45(8): 083601.
    [19]

    LEGARDA-SAENZ R, BOTHE T, JUPTNER W P. Accurate procedure for the calibration of a structured light system. Optical Engineering, 2004, 43(2): 464-471.
    [20]

    LI Z, SHI Y, WANG C, et al. Accurate calibration method for a structured light system. Optical Engineering,2008, 47(5): 053604.
    [21]

    GAO W, WANG L, HUA Y. Flexible calibration of a portable structured light system through surface plane.Acta Automatica Sinica, 2009, 34 (11): 1358-1362(in Chinese).
    [22]

    GAO W, WANG L, HU Z. Flexible method for structured light system calibration.Optical Engineering, 2008, 47(8): 083602.
    [23]

    FALCAO G, HURTOS N, MASSICH J. Plane-based calibration of a projector-camera system.New York,USA:VIBOT Master,2008:9.
    [24]

    HUYNH D Q, OWENS R A, HARTMANN P. Calibrating a structured light stripe system: a novel approach.International Journal of Computer Vision, 1999, 33(1): 73-86.
    [25]

    ZHOU F, ZHANG G. Complete calibration of a structured light stripe vision sensor through planar target of unknown orientations.Image and Vision Computing, 2005, 23(1): 59-67.
    [26]

    YAMAUCHI K, SAITO H, SATO Y. Calibration of a structured light system by observing planar object from unknown viewpoints//Pattern Recognition, 2008 ICPR 19th International Conference.New York,USA:IEEE,2008:1-4.
    [27]

    WEI Z, CAO L, ZHANG G. A novel 1-D target-based calibration method with unknown orientation for structured light vision sensor. Optics & Laser Technology, 2010, 42(4): 570-574.
    [28]

    WEI Zh Q, LI J T, JI X P, et al. A calibration method based on multi-linear structured light.Procedia Engineering, 2010,7:345-351.
    [29]

    XIE Z X, ZHU W T, ZHANG Zh W, et al. A novel approach for the field calibration of line structured-light sensors.Measurement, 2010, 43(2): 190-196.
    [30]

    BOUGUET J Y, PERONA P. 3-D photography on your desk//Computer Vision, Sixth International Conference.New York,USA:IEEE,1998:43-50.
    [31]

    LUO H F, XU J, BINH N H, et al. A simple calibration procedure for structured light system.Optics and Lasers in Engineering, 2014, 57(1): 6-12.
    [32]

    SANSONI G, CAROCCI M, RODELLA R. Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light.IEEE Transactions on Instrumentation and Measurement, 2000, 49(3): 628-636.
    [33]

    HU Q, HUANG P S, FU Q, et al. Calibration of a three-dimensional shape measurement system.Optical Engineering, 2003, 42(2): 487-493.
    [34]

    JIA X, ZHANG Z, CAO F, et al. Model and error analysis for coded structured light measurement system.Optical Engineering, 2010, 49(12): 123603.
    [35]

    XU J, XI N, ZHANG C, et al. Real-time 3-D shape inspection system of automotive parts based on structured light pattern.Optics & Laser Technology, 2011, 43(1):1-8.
    [36]

    LEANDRY I, BREQUE C, VALLE V. Calibration of a structured-light projection system: development to large dimension objects.Optics and Lasers in Engineering, 2012, 50 (3): 373-379.
    [37]

    LIU H, SU W H, REICHARD K, et al. Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement.Optics Communications, 2003, 216(1/3): 65-80.
    [38]

    TAVARES P J, VAZ M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry. Optics Communications, 2007, 274(2): 307-314.
    [39]

    ANCHINI R, di LEO G, LI G R C, et al. A new calibration procedure for 3-D shape measurement system based on phase-shifting projected fringe profilometry.IEEE Transactions on Instrumentation and Measurement,2009, 58(5): 1291-1298.
    [40]

    VARGAS J, ANTONIO Q J, JOSE TERRON-LOPEZ M. Flexible calibration procedure for fringe projection profilometry.Optical Engineering, 2007, 46(2): 023601.
    [41]

    XU J, DOUET J, ZHAO J G, et al. A simple calibration method for structured light-based 3-D profile measurement.Optics & Laser Technology, 2013, 48(5): 187-193.
  • [1] 张志俊吴庆阳邓亦锋蒋逸凡郑国梁翟剑庞 . 基于霍夫变换的结构光场3维成像方法. 激光技术, 2023, 47(4): 492-499. doi: 10.7510/jgjs.issn.1001-3806.2023.04.008
    [2] 陈慧赵斌马国鹭 . 无衍射光电子标靶的直接映射标定方法研究. 激光技术, 2011, 35(3): 407-411. doi: 10.3969/j.issn.1001-3806.2011.03.031
    [3] 郁飞王天荣许勃 . 激光扭振仪调整、应用与误差. 激光技术, 2002, 26(1): 63-65.
    [4] 魏继锋彭勇高学燕周山 . 简易型大直径激光束功率能量在线测量装置. 激光技术, 2011, 35(3): 322-325. doi: 10.3969/j.issn.1001-3806.2011.03.010
    [5] 李玉瑶王菲孙同同 . 薄膜激光损伤阈值标定技术. 激光技术, 2021, 45(6): 729-734. doi: 10.7510/jgjs.issn.1001-3806.2021.06.009
    [6] 王云鹏刘力双刘洋 . 鱼眼成像系统标定技术研究. 激光技术, 2024, 48(1): 77-82. doi: 10.7510/jgjs.issn.1001-3806.2024.01.013
    [7] 杨仁付朱孝立陈军宁 . Ronchi光栅误差的数值仿真. 激光技术, 2012, 36(1): 37-41. doi: 10.3969/j.issn.1001-3806.2012.01.011
    [8] 林静焕戴勇林旭焕许敏界 . 激光扫描球形偏心引起误差的理论分析. 激光技术, 2014, 38(6): 813-816. doi: 10.7510/jgjs.issn.1001-3806.2014.06.019
    [9] 代金科郑素珍苏娟 . 基于结构光和深度神经网络的3维面形重建. 激光技术, 2023, 47(6): 831-840. doi: 10.7510/jgjs.issn.1001-3806.2023.06.015
    [10] 赵贤凌刘建生张华煜武迎春 . 投影仪标定中的相位误差补偿. 激光技术, 2017, 41(5): 697-702. doi: 10.7510/jgjs.issn.1001-3806.2017.05.016
    [11] 梁宇龙段发阶 . 基于密度聚类的光条中心线提取方法. 激光技术, 2020, 44(4): 459-465. doi: 10.7510/jgjs.issn.1001-3806.2020.04.011
    [12] 潘森高婧婧许孝芳毕勇李金鹏 . 多星敏感器地面热漂移标定位置误差检测研究. 激光技术, 2020, 44(6): 664-667. doi: 10.7510/jgjs.issn.1001-3806.2020.06.002
    [13] 陈曼龙 . 机器视觉螺纹测量的误差分析. 激光技术, 2014, 38(1): 109-113. doi: 10.7510/jgjs.issn.1001-3806.2014.01.024
    [14] 张德斌宋余华王全胜杜亚清张新兴张豪 . 激光发散角测量的误差分析. 激光技术, 2016, 40(6): 926-929. doi: 10.7510/jgjs.issn.1001-3806.2016.06.031
    [15] 朱红伟叶会英 . 光反馈自混合干涉系统反馈水平的研究与测量. 激光技术, 2010, 34(6): 847-850. doi: 10.3969/j.issn.1001-3806.2010.06.034
    [16] 吴兆勇杜正春 . 基于误差椭球的激光测量系统的不确定度分析. 激光技术, 2017, 41(1): 29-33. doi: 10.7510/jgjs.issn.1001-3806.2017.01.007
    [17] 孙园园陈长缨刘小冲杨宇峰肖勇盛 . 用于测量印刷机套印误差的光电检测系统. 激光技术, 2010, 34(4): 436-439. doi: 10.3969/j.issn.1001-3806.2010.04.002
    [18] 曾亮维蔡元静谭础深黄佐华 . 斯托克斯光偏振态测量系统的优化. 激光技术, 2017, 41(1): 74-78. doi: 10.7510/jgjs.issn.1001-3806.2017.01.016
    [19] 杨志远卢荣军王生春 . 一种纵向共振光声池谐振频率测量方法. 激光技术, 2019, 43(3): 387-391. doi: 10.7510/jgjs.issn.1001-3806.2019.03.018
    [20] 李振有禹延光叶会英 . 基于适度光反馈自混合干涉技术的微位移测量. 激光技术, 2008, 32(5): 499-501,516.
  • 加载中
计量
  • 文章访问数:  4953
  • HTML全文浏览量:  1142
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-28
  • 录用日期:  2014-08-14
  • 刊出日期:  2015-03-25

结构光测量系统的标定方法综述

    作者简介: 刘顺涛(1981-),男,博士,现主要从事3维测量的研究。E-mail:29131246@qq.com
  • 1. 成都飞机工业(集团)有限责任公司 制造工程部, 成都 610092;
  • 2. 清华大学 机械工程系, 北京 100084
基金项目:  国家自然科学基金资助项目(51105218);教育部博士点基金资助项目(20110002120053)

摘要: 结构光测量技术具有无接触、测量速度快、测量精度较高且成本较低等优点而被广泛应用到各个领域。结构光测量系统的精度取决于系统标定精度。综述了结构光测量系统的现有标定方法,即基于矩阵变换的摄影测量法、基于几何关系的三角测量法和多项式拟合法。摄影测量法可以进一步分为伪相机法、逆向相机法和光平面法。从误差扩散、对投影仪标定的依赖性、精密辅助标定装置、操作复杂度等方面对上述标定方法进行了对比。指出标定方法的研究趋势是从实验室方法向现场标定技术的转变,要求标定装置简单、标定过程便捷、标定时间快速且精度高。

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回