[1] 李金华, 安学甲, 姚芳萍, 等. H13钢激光熔覆Ni基涂层热应力循环的仿真研究[J]. 中国激光, 2021, 48(10): 1002104.LI J H, AN X J, YAO F P, et al. Simulation on thermal stress cycle in laser cladding of H13 steel Ni-based coating[J]. Chinese Journal of Lasers, 2021, 48(10): 1002104(in Chinese).
[2] 李绍宏, 何文超, 张旭, 等. H13型热作模具钢表面改性技术研究进展[J]. 钢铁, 2021, 56(3): 13-22.LI Sh H, HE W Ch, ZHANG X, et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron & Steel, 2021, 56(3): 13-22(in Chinese).
[3] 曹俊, 卢海飞, 鲁金忠, 等. WC对激光熔覆热作模具的组织和磨损性能的影响[J]. 中国激光, 2019, 46(7): 0702001.CAO J, LU H F, LU J Zh, et al. Effects of tungsten carbide particles on microstructure and wear resistance of hot-working laser cladding[J]. Chinese Journal of Lasers, 2019, 46(7): 0702001 (in Chinese).
[4] MENG C, CAO R, LI J, et al. Mechanical properties of TiC-reinforced H13 steel by bionic laser treatment[J]. Optics & Laser Technology, 2021, 136: 106815.
[5] 李洪波, 高强强, 李康英, 等. 表面激光熔覆H13/NiCr-Cr3C2复合粉末熔覆层性能研究[J]. 中国激光, 2021, 48(18): 1802017.LI H B, GAO Q Q, LI K Y, et al. Properties of surface laser cladding H13/NiCr-Cr3C2 composite powder cladding[J]. Chinese Journal of Lasers, 2021, 48(18): 1802017(in Chinese).
[6] 刘立君, 冯梦奎, 王晓陆, 等. 超声辅助H13模具钢表面激光熔覆强化层组织分析[J]. 焊接学报, 2021, 42(6): 85-90.LIU L J, FENG M K, WANG X L, et al. Microstructure analysis of laser cladding strength-ening layer on H13 die steel surface assisted by ultrasonic[J]. Transactions of the China Welding Institution, 2021, 42(6): 85-90(in Chinese).
[7] XUE K N, LU H F, LUO K Y, et al. Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J]. Surface and Coatings Technology, 2020, 402: 126488. doi: 10.1016/j.surfcoat.2020.126488
[8] 陈子豪, 孙文磊, 黄勇, 等. 镍基高温合金激光熔覆涂层组织及性能研究[J]. 激光技术, 2021, 45(4): 441-447.CHEN Z H, SUN W L, HUANG Y, et al. Study on microstructure and properties of laser cladding coating for base superalloy[J]. Laser Technology, 2021, 45(4): 441-447(in Chinese).
[9] LU J Z, CAO J, LU H F, et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding[J]. Surface and Coatings Technology, 2019, 369: 228-237.
[10] 胡晏明, 陈炜, 曹一枢, 等. 激光熔覆技术在模具磨损控制方面的研究进展[J]. 热加工工艺, 2021, 50(2): 10-12.HU Y M, CHEN W, CAO Y Sh, et al. Research progress of laser cladding technology in die wear control[J]. Hot Working Technology, 2021, 50(2): 10-12(in Chinese).
[11] 黄海博, 孙文磊. Ni60激光熔覆工艺参量对涂层裂纹及厚度的影响[J]. 激光技术, 2021, 45(6): 788-793.HUANG H B, SUN W L. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. Laser Technology, 2021, 45(6): 788-793(in Chinese).
[12] YANG Z, HAO H, GAO Q, et al. Strengthening mechanism and high-temperature properties of H13+ WC/Y2O3 laser-cladding coatings[J]. Surface and Coatings Technology, 2021, 405: 126544.
[13] LU J Z, XUE K N, LU H F, et al. Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J]. Journal of Materials Processing Technology, 2021, 296: 117202.
[14] LIZZUL L, SORGATO M, BERTOLINI R, et al. On the influence of laser cladding parameters and number of deposited layers on asbuilt and machined AISI H13 tool steel multilayered claddings[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 361-370.
[15] CHAI Q, WANG Z, FANG C, et al. Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J]. Surface and Coatings Technology, 2021, 422: 127494.
[16] LIU Y, XU T, ZHANG D, et al. Numerical simulation and microstructure formation mechanism of Ni-based coating fabricated by laser on copper plate[J]. Optik, 2022, 254: 168645.
[17] WANG Ch Y, ZHOU J Zh, ZHANG T, et al. Numerical simulation and solidification characteristics for laser cladding of Inconel 718[J]. Optics & Laser Technology, 2022, 149: 107843.
[18] GAO J, WU C, HAO Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287.
[19] ZHANG Q, XU P, ZHA G, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J]. Optik, 2021, 242: 167079.
[20] CUI Ch, WU M P, HE R, et al. Understanding Stellite-6 coating prepared by laser clad-ding: Convection and columnar-to-equiaxed transition[J]. Optics & Laser Technology, 2022, 149: 107885.
[21] GAO W, ZHAO S, WANG Y, et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat and Mass Transfer, 2016, 92: 83-90.