[1] TANG T, ZHOU G, LU Z G, et al. Effects of dehumidification drying environment on drying speed of one component waterborne wood top coating[J]. Applied Surface Science, 2016, 365(3): 131-135.
[2] TANG T, BAI S H, ZHOU G, et al. Effect of dehumidification drying environment on surface gloss of one component waterborne wood top coating[J]. Applied Thermal Engineering, 2016, 102(1): 716-719.
[3] UGULINO B, HERNANDEZ R E. Assessment of surface properties and solvent-borne coating performance of red oak wood produced by peripheral planning [J]. European Journal of Wood and Wood Products, 2017, 75(4):581-593. doi: 10.1007/s00107-016-1090-6
[4] GHOLAMIYAN H, TARMIAN A, RANJBAR Z, et al. Silane nanofilm formation by sol-gel processes for promoting adhesion of waterborne and solvent-borne coatings to wood surface[J]. Holzforschung, 2016, 70(5):429-437. doi: 10.1515/hf-2015-0072
[5] ALTGEN M, MILITZ H. Thermally modified Scots pine and Norway spruce wood as substrate for coating systems[J]. Journal of Coatings Technology and Research, 2017, 14(3):531-541. doi: 10.1007/s11998-016-9871-8
[6] MEIJER M, THURICH K, MILITZ H. Comparative study on penetration characteristics of modern wood coatings[J]. Wood Science and Technology, 1998, 32(5): 347-365. doi: 10.1007/BF00702791
[7] MARTINS E M, BORBA P F D S, SANTOS N E D, et al. The relationship between solvent use and BTEX concentrations in occupational environments[J]. Environmental Monitoring and Assessment, 2016, 188(11): 712-720.
[8] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287):392-395. doi: 10.1038/nature08907
[9] BUTLER H J, ASHTON L, BIRD B, et al. Using Raman spectroscopy to characterize biological materials[J]. Nature Protocols, 2016, 11(4): 664-687. doi: 10.1038/nprot.2016.036
[10] JERMYN M, MOK K, MERCIER J, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Science Translational Medicine, 2015, 7(274): 274ra19.
[11] WANG W, XI X X, WANG B, et al. Raman spectrum analysis of forsythia leaves[J]. Laser Technology, 2011, 35(5):672-674(in Chinese).
[12] FANG G, YIN L, LIU F, et al. Application research of fluorescence suppression based on differential Raman technique[J]. Laser Technology, 2019, 43(3):359-362(in Chinese).
[13] PENIDO F D O, AUGUSTO C, PACHECO T, et al. Raman spectroscopy in forensic analysis: Identification of cocaine and other illegal drugs of abuse[J]. Journal of Raman Spectroscopy, 2016, 47(1): 28-38. doi: 10.1002/jrs.4864
[14] STEPHAN H, LAVEN M, ABDELOUAHID M, et al. Label-free raman spectroscopic imaging monitors the integral physiologically relevant drug responses in cancer cells[J]. Analytical Chemistry, 2015, 87(14): 7297-7304. doi: 10.1021/acs.analchem.5b01431
[15] SHEN B J, JIN L H, LIU Y X, et al. Study of intermolecular interactions between pterostilbene and human serum albumin by fluorescence spectrometry-surface enhanced raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2017, 45(11):1613-1620(in Chinese).
[16] KLINE N D, TRIPATHI A, MIRSAFAVI R, et al. Optimization of surface-enhanced raman spectroscopy conditions for implementation into a microfluidic device for drug detection[J]. Analytical Chemistry, 2016, 88(21):10513-10522. doi: 10.1021/acs.analchem.6b02573
[17] HU Y, FENG S, GAO F, et al. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy[J]. Food Chemistry, 2015, 176(6): 123-129.
[18] LENZ R, ENDERS K, STEDMON C A, et al. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement[J]. Marine Pollution Bulletin, 2015, 100(1): 82-91. doi: 10.1016/j.marpolbul.2015.09.026
[19] BUZZINI P, MASSONNET G. The analysis of colored acrylic, cotton, and wool textile fibers using micro-raman spectroscopy. Part 2: Comparison with the traditional methods of fiber examination[J]. Journal of Forensic Sciences, 2015, 60(3):712-720. doi: 10.1111/1556-4029.12654
[20] ZIEBA-PALUS J, BEATA M T. Application of infrared and raman spectroscopy in paint trace examination[J]. Journal of Forensic Sciences, 2013, 58(5):1359-1363. doi: 10.1111/1556-4029.12183
[21] WU Zh H, CUI X R, HUANG D Zh, et al. Spectral analysis of red blood cells in umbilical cord blood and children with congenital heart disease[J]. Laser Technology, 2012, 36(2):238-242(in Chinese).
[22] AIT-SAHALIA Y, XIU D. Principal component analysis of high-frequency data[J]. Journal of the American Statistical Association, 2017, 144(525):1-17.
[23] HE X L, WANG J F, WU F L, et al. Identification of the infrared spectra of tire rubber based on chemometrics[J]. Journal of Analytical Science, 2019, 35(3):357-361(in Chinese).
[24] CHEN G Q, WEI B L, WANG J, et al. Quantitative determination of melamine by fluorescence spectroscopy and radial basis function neural networks[J]. Spectroscopy and Spectral Analysis, 2010, 30(1):239-242(in Chinese).
[25] GONG Y Ch, DU Ch H, ZHANG Y N, et al. Prediction of blood glucose based on principal component and GBDT[J]. Mathematics in Practice and Theory, 2019, 49(14):116-122(in Chinese).