[1] LU L, JOANNOPOULOS J D, SOLJA ČIĆM. Topological photonics[J]. Nature Photonics, 2014, 8(11): 821-829. doi: 10.1038/nphoton.2014.248
[2] NOVOSELOV K S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
[3] XIAO S Sh. Graphene nanophotonics: From fundamentals to applications[C]// 2016 Progress in Electromagnetic Research Symposium (PIERS). New York, USA: IEEE, 2016: 3130.
[4] BO X, ZHOU M, GUO L. Electrochemical sensors and biosensors based on less aggregated graphene[J]. Biosensors & Bioelectronics, 2017, 89(Pt 1): 167-186.
[5] CINTI S, ARDUINI F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms[J]. Biosensors & Bioelectronics, 2017, 89(Pt 1): 107-122.
[6] MAIER S A, BARCLAY P E, JOHNSON T J, et al. Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing[J]. Applied Physics Letters, 2004, 84(20): 3990-3992. doi: 10.1063/1.1753060
[7] WANG L. Research on optical properties of precious metal nanostructures and enhancement of optical effects by surface plasmons[D]. Hangzhou: Zhejiang University, 2011: 1-128(in Chinese).
[8] REN M X, XU J J. Principle and application of surface plasma stimulus to enhance nonlinearity[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080002(in Chinese).
[9] WEI Zh N. Nano-plasma catalytic sensing research[D]. Chongqing: Chongqing University, 2018: 1-139 (in Chinese).
[10] OCHIAI T, ONODA M. Photonic analog of graphene model and its extension—Dirac cone, symmetry, and edge states[J]. Physical Review, 2012, B80(15): 155103.
[11] KHANIKAEV A B, HOSSEIN MOUSAVI S, TSE W K, et al. Photonic topological insulators[J]. Nature Materials, 2013, 12(3): 233-239. doi: 10.1038/nmat3520
[12] MA T, KHANIKAEV A B, MOUSAVI S H, et al. Guiding electromagnetic waves around sharp corners: Topologically protected photonic transport in metawaveguides[J]. Physical Review Letters, 2015, 114(12): 127401. doi: 10.1103/PhysRevLett.114.127401
[13] CONSTANT T J, HORNETT S M, CHANG D E, et al. All-optical generation of surface plasmons in graphene[J]. Nature Physics, 2015, 12(2): 124-127.
[14] SLOBOZHANYUK A P, KHANIKAEV A B, FILONOV D S, et al. Experimental demonstration of topological effects in bianisotropic metamaterials[J]. Scientific Reports, 2016, 6(1): 22270-22275. doi: 10.1038/srep22270
[15] MA R K, ZHANG Y Ch, FANG Y T. Broadband THz absorbers based on graphene and 1-D photonic crystal[J]. Laser Technology, 2017, 41(5): 723-727(in Chinese).
[16] LU L, WANG Z. Topological one-way fiber of second Chern number[J]. Nature Communications, 2016, 9(1): 821-829.
[17] SONG Z D. Topological photonic crystal design and research based on graphene[D]. Xi'an: University of Chinese Academy of Sciences (Xi'an Institute of Optical Precision Machinery, Chinese Academy of Sciences), 2018: 1-70(in Chinese).
[18] GAO Y F, JIANG Zh, LIU K Y, et al. Optical waveguide for photonic crystal topological boundary state photonic spin guidance mechanism: CN110007398A[P]. 2019-07-12(in Chinese).
[19] HAN J, GAO Y, JIAO W Y, et al. Mid-infrared plasmon control based on graphene nanoribbons[J]. Chinese Journal of Optics, 2020, 13(3): 627-636(in Chinese).
[20] BI L, YANG Y C, QIN J, et al. A silicon-based integrated optical isolation device based on topological protection mechanism: CN110941109A[P]. 2020-03-31(in Chinese).
[21] LIANG FU, KANE C L. Time reversal polarization and a Z2 adiabatic spin pump[J]. Physical Review, 2006, B74(19): 195312.