[1] ZHANG L J, SHEN W, LIU T. Study on technological machining of thing-wall titanium alloy element[J]. Modern Manufacturing Engineering, 2012, 34(11):69-72(in Chinese).
[2] LIANG X K, DONG P, CHEN J L, et al. Microstructure and mechanical properties of selective laser melting Ti-6Al-4V alloy[J]. Applied Laser, 2014, 34(2):101-104(in Chinese).
[3] UHLMANN E, KERSTUNG R, KLEIN T B, et al. Additive manufacturing of titanium alloy for aircraft components[J]. Procedia Cirp, 2015, 35:55-60. doi: 10.1016/j.procir.2015.08.061
[4] YAO H Sh, SHI Y Sh, ZHANG W X, et al. Numerical simulation of the temperature field in selective laser melting[J]. Applied Laser, 2007, 27(6):456-460(in Chinese).
[5] YANG Y Q, LUO Z Y, SU X B, et al. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(1):0103001(in Chinese).
[6] LIU Y, ZHANG J, PANG Z, et al. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method[J]. Optics & Lasers in Engineering, 2018, 103:34-45.
[7] LI Zh H, REN J X, ZHENG W Zh, et al. The influence of scan length on fabricating thin-walled components in selective laser melting[J]. International Journal of Machine Tools & Manufacture, 2017, 126:1-12.
[8] SONG C, YANG Y, LIU Y, et al. Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5/8):885-893.
[9] LI C, LIU J F, FANG X Y, et al. Efficient predictive model of part distortion and residual stress in selective laser melting[J]. Additive Manufacturing, 2017, 17: 157-168. doi: 10.1016/j.addma.2017.08.014
[10] ZHANG K, LIU T T, ZHANG C D, et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese Journal of Lasers, 2015, 42(9): 0903007(in Chinese).
[11] MAZUR M, LEARY M, SUN S, et al. Deformation and failure behavior of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5/8):1391-1411.
[12] ZHANG G Q, YANG Y Q, ZHANG Z M, et al. Optimal design of support structures in selective laser melting of part[J]. Chinese Journal of Lasers, 2016, 43(12): 1202002(in Chinese).
[13] PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15. doi: 10.1016/j.addma.2016.05.014
[14] ALI H, GHADBEIGI H, MUMTAZ K. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering, 2018, A712: 175-187.
[15] LI Y, ZHOU K, TAN P, et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 136:24-35. doi: 10.1016/j.ijmecsci.2017.12.001
[16] SIMSON T, EMMEL A, DWARS A, et al. Residual stress measurements on AISI 316L samples manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 17: 183-189. doi: 10.1016/j.addma.2017.07.007
[17] VRANCKEN B, CAIN V, KNUTSEN R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87:29-32. doi: 10.1016/j.scriptamat.2014.05.016
[18] DENG Sh Sh, YANG Y Q, LI Y, et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts. Chinese Journal of Lasers, 2016, 43(12): 1202003(in Chinese).
[19] LIANG X K, CHEN J L, YAN Zh Y, et al. Study on surface adhesion and residual stress of TC4 titanium alloy by selective laser melting[J]. Electro Machining Mould, 2016, 16(5):52-55(in Chinese).
[20] OSAKADA K, SHIOMI M. Flexible manufacturing of metallic products by selective laser melting of powder[J]. International Journal of Machine Tools & Manufacture, 2006, 46(11):1188-1193.
[21] LIU Z A, SHI W, WANG Ch. Study on numerical simulation of residual stresses cinduced by laser shock processing.Laser Technology, 2017, 41(1):1-5(in Chinese).
[22] LIU T T, ZHANG Ch D, LIAO W H, et al. Experimental analysis of pool behavior in overhang structure fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(12): 1202004(in Chinese).