[1] TAYLOR A M K P. Science review of internal combustion engines [J]. Energy Policy, 2008, 36(12): 4657-4667. doi: 10.1016/j.enpol.2008.09.001
[2] QIN X, KOBAYASHI H, NIIOKA T. Laminar burning velocity of hydrogen-air premixed flames at elevated pressure [J]. Experimental Thermal & Fluid Science, 2000, 21(1): 58-63.
[3] LAMOUREUX N, DJEBAÏLI-CHAUMEIX N, PAILLARD C E. Laminar flame velocity determination for H2-air-He-CO2 mixtures using the spherical bomb method [J]. Experimental Thermal & Fluid Science, 2003, 27(4): 385-393.
[4] JI C, WANG S. Experimental study on combustion and emissions performance of a hybrid hydrogen-gasoline engine at lean burn limits[J]. International Journal of Hydrogen Energy, 2010, 35(3):1453-1462. doi: 10.1016/j.ijhydene.2009.11.051
[5] KARIM G A, WIERZBA I, AL-ALOUSI Y. Methane-hydrogen mixtures as fuels [J]. International Journal of Hydrogen Energy, 1996, 21(7): 625-631. doi: 10.1016/0360-3199(95)00134-4
[6] PULKRABEK W W. Engineering fundamentals of the internal combustion engine[M]. New Jersey, USA: Pearson Prentice Hall, 2004: 106.
[7] SHRESTHA S B, KARIM G. Hydrogen as an additive to methane for spark ignition engine applications [J]. International Journal of Hydrogen Energy, 1999, 24(6): 577-586. doi: 10.1016/S0360-3199(98)00103-7
[8] SCHEFER R. Hydrogen enrichment for improved lean flame stability [J]. International Journal of Hydrogen Energy, 2003, 28(10): 1131-1141. doi: 10.1016/S0360-3199(02)00199-4
[9] CHEHROUDI B. Laser ignition for combustion engines [C]//Advanced Laser Applications Conference and Exposition. Michigan, USA: The International Lasers Users Council, 2004: 1-20.
[10] PHUOC T X. Laser-induced spark ignition fundamental and applications [J]. Optics & Lasers in Engineering, 2006, 44(5): 351-397.
[11] WINTNER E, KOFLER H, SRIVASTAVA D K, et al. Laser plasma ignition: Status, perspectives, solutions[J].Proceedings of the SPIE, 2013, 9065: 90650B.
[12] KOFLER H, TAUER J, TARTAR G, et al. An innovative solid-state laser for engine ignition [J]. Laser Physics Letters, 2007, 4(4): 322-327. doi: 10.1002/lapl.200610106
[13] KROUPA G. Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines [J]. Optical Engineering, 2009, 48(1): 014202-014205. doi: 10.1117/1.3072958
[14] MA Y F, LI X D, YU X, et al. A novel miniaturized passively Q-switched pulse-burst laser for engine ignition [J]. Optics Express, 2014, 22(20): 24655-24665. doi: 10.1364/OE.22.024655
[15] DEARDEN G, SHENTON T. Laser ignited engines: Progress, cha-llenges and prospects[J]. Optics Express, 2013, 21(s6): A1113-A1125. doi: 10.1364/OE.21.0A1113
[16] TAUER J, KOFLER H, WINTNER E. Laser-initiated ignition [J]. Laser & Photonics Reviews, 2010, 4(1): 99-122.
[17] FUCHS D I J, LEITNER D I A, TINSCHMANN G, et al. Concept for high-performance direct ignition gas engines [J]. MTZ Worldwide, 2013, 74(5): 18-23. doi: 10.1007/s38313-013-0048-x
[18] LYON E, KUANG Z, CHENG H, et al. Multi-point laser spark generation for internal combustion engines using a spatial light modulator [J]. Journal of Physics, 2014, D47(47): 475501.
[19] CHEN M, DOU Zh G, XI W X. Advances in the methods of laser induced plasma ignition [J]. Laser & Optoelectronics Progress, 2018, 55(3): 030010 (in Chinese).
[20] NAKAYA S, ISEKI S, GU X J, et al. Flame kernel formation behaviors in close dual-point laser breakdown spark ignition for lean methane/air mixtures [J]. Proceedings of the Combustion Institute, 2017, 36(3): 3441-3449. doi: 10.1016/j.proci.2016.07.057
[21] PHUOC T X. Laser spark ignition: Experimental determination of laser-induced breakdown thresholds of combustion gases [J]. Optics Communications, 2000, 175(4/6): 419-423.
[22] YABLONOVITCH E. Self-phase modulation and short-pulse generation from laser-breakdown spark [J]. Physical Review, 1974, A10(5): 1888-1895.
[23] TAIRA T. High brightness microchip laser and engine ignition [J]. The Review of Laser Engineering, 2010, 38(8): 576-584. doi: 10.2184/lsj.38.576
[24] PHUOC T X. Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures [J]. Combustion & Flame, 2000, 122(4): 508-510.
[25] MORSY M H, KO Y S, CHUNG S H. Laser-induced ignition using a conical cavity in CH4-air mixtures [J]. Combustion & Flame, 1999, 119(4): 473-482.
[26] MORSY M H, KO Y S, CHUNG S H, et al. Laser-induced two-point ignition of premixture with a single-shot laser [J]. Combustion & Flame, 2001, 124(4): 724-727.
[27] MORSY M H, CHUNG S H. Laser-induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture [J]. Experimental Thermal & Fluid Science, 2003, 27(4): 491-497.
[28] RYU S K, WON S H, CHUNG S H. Laser-induced multi-point ignition with single-shot laser using conical cavities and prechamber with jet holes [J]. Proceedings of the Combustion Institute, 2009, 32(2): 3189-3196. doi: 10.1016/j.proci.2008.05.080
[29] WEINROTTER M, KOPECEK H, TESCH M, et al. Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure [J]. Experimental Thermal & Fluid Science, 2005, 29(5): 569-577.
[30] KUANG Z, LYON E, CHENG H, et al. Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance[J]. Optics and Lasers in Engineering, 2017, 90(1): 275-283.
[31] NICOLAIE P, TSUNEKANE M, TAIRA T. All-poly-crystalline ceramics Nd:YAG/Cr4+:YAG monolithic micro-lasers with multiple-beam output [M]. Vilnius, Lithuania: InTech, 2011: 59-82.
[32] TSUNEKANE M. Micro-solid-state laser for ignition of automobile engines[M].Vilnius, Lithuania: InTech, 2010: 195-212.
[33] TAIRA T. High brightness microchip lasers for engine ignition[C]//Frontiers in Optics. Washington DC, USA: Optical Society of America, 2012: FM3G. 1.
[34] TSUNEKANE M, TAIRA T. Long time operation of composite ceramic Nd: YAG/Cr: YAG micro-chip lasers for ignition[C]// Laser Ignition Conference. Washington DC, USA: Optical Society of America, 2015: T4A-3.
[35] DENG S P, CHEN P F, WANG Y, et al. Dual-end LD-pumped slab lasers with folded three-pass resonators [J]. Laser Technology, 2018, 42(1):43-47 (in Chinese).
[36] LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting lasers [J]. Laser Technology, 2018, 42(4):556-561 (in Chinese).
[37] LIU J Q, WANG N, YANG Y Y, et al. A micro acousto-optic Q-switched laser with narrow pulse width [J]. Laser Technology, 2017, 41(4):562-565 (in Chinese).
[38] LI Y L, JIA K, GU X S, et al. Study on an acousto-optical Q-switched Nd:YVO4 laser with 25kHz repetition rate and about 2ns pulse duration [J]. Laser Technology, 2018, 42(1):34-38 (in Chinese).
[39] YANG L, DONG J. Progress in laser ignition based on passively Q-switched solid-sate lasers [J]. Laser & Optoelectronics Progress, 2015, 52(3): 030007 (in Chinese).
[40] MA Y F, HE Y, YU X, et al. Research progress of laser source used in laser induced plasma ignition [J]. Infrared and Laser Engineering, 2016, 45(11): 61-66 (in Chinese).
[41] DONG J, WANG G Y, REN Y Y. Advances in passively Q-switched solid-state lasers based on composite materials [J]. Chin-ese Journal of Lasers, 2013, 40(6): 0601003 (in Chinese). doi: 10.3788/CJL
[42] NICOLAIE P, TSUNEKANE M, KANEHARA K, et al. Composite all-ceramics, passively Q-switched Nd: YAG/Cr4+: YAG monolithic micro-laser with two-beam output for multi-point ignition[C]//Proceedings of the Lasers and Electro-Optics. New York, USA: IEEE, 2011: 1-2.
[43] NICOLAIE P, TSUNEKANE M, TAIRA T. Composite, all-cera-mics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition [J]. Optics Express, 2011, 19(10): 9378-9384. doi: 10.1364/OE.19.009378
[44] WANG Z, YU J, XIA K, et al. 2×2 arrayed and passively Q-switched Nd:YVO4 laser under Dammann-arrayed pumping [J]. Applied Optics, 2014, 53(12): 2664-2668. doi: 10.1364/AO.53.002664
[45] MA Y, HE Y, YU X, et al. Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping [J]. Optics Express, 2015, 23(19): 24955-24961. doi: 10.1364/OE.23.024955