[1] VAHALA K J. Optical microcavities[J]. Nature, 2003, 424(6950):839-846. doi: 10.1038/nature01939
[2] SHOMRONI I, ROSENBLUM S, LOVSKY Y, et al. All-optical routing of single photons by a one-atom switch controlled by a single photon[J]. Science, 2014, 345(6199):903-906. doi: 10.1126/science.1254699
[3] MICHLER P. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500):2282-2285. doi: 10.1126/science.290.5500.2282
[4] MOREAU E, ROBERT I, GÉRARD J M, et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities[J]. Applied Physics Letters, 2001, 79(18): 2865-2867. doi: 10.1063/1.1415346
[5] PELTON M, SANTORI C, VUČKOVIĆ J, et al. Efficient source of single photons: A single quantum dot in a micropost microcavity[J]. Physical Review Letters, 2002, 89(23):233602.. doi: 10.1103/PhysRevLett.89.233602
[6] SANTORI C, FATTAL D, VUČKOVIĆ J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907):594-597. doi: 10.1038/nature01086
[7] GAZZANO O, VASCONCELLOS S M D, ARNOLD C, et al. Bright solid-state sources of indistinguishable single photons[J]. Nature Communications, 2013, 4(4):1425.
[8] REITHMAIER J P, SEK G, LÖFFLER A, et al. Strong coupling in a single quantum dot-semiconductor microcavity system[J]. Nature, 2004, 432(7014):197-200. doi: 10.1038/nature02969
[9] NOMURA M, KUMAGAI N, IWAMOTO S, et al. Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system[J]. Nature Physics, 2010, 6(4): 279-283. doi: 10.1038/nphys1518
[10] PELTON M, VUKOVIC J, SOLOMON G S, et al. Three-dimensionally confined modes in micropost microcavities: Quality factors and Purcell factors[J]. IEEE Journal of Quantum Electronics, 2002, 38(2):170-177.
[11] FARAON A, FUSHMAN I, ENGLUND D, et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade[J]. Nature Physics, 2008, 4(11):859-863. doi: 10.1038/nphys1078
[12] TAKEMOTO K, NAMBU Y, MIYAZAWA T, et al. Quantum key distribution over 120km using ultrahigh purity single-photon source and superconducting single-photon detectors[J]. Scientific Reports, 2015, 5(1):14383. doi: 10.1038/srep14383
[13] SONG H Z, TAKEMOTO K, MIYAZAWA T, et al. Design of Si/SiO2 micropillar cavities for purcell-enhanced single photon emission at 1.55μm from InAs/InP quantum dots[J]. Optics Letters, 2013, 38(17): 3241-3244. doi: 10.1364/OL.38.003241
[14] SONG H Z, TAKEMOTO K, MIYAZAWA T, et al. High quality-factor Si/SiO2-InP hybrid micropillar cavities with submicrometer diameter for 1.55μm telecommunication band[J]. Optics Express, 2015, 23(12):16264. doi: 10.1364/OE.23.016264
[15] LERMER M, GREGERSEN N, DUNZER F, et al. Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments[J]. Physical Review Letters, 2012, 108(5):057402. doi: 10.1103/PhysRevLett.108.057402
[16] ZHANG Y, LONČAR M. Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume[J]. Optics Letters, 2009, 34(7): 902-904. doi: 10.1364/OL.34.000902
[17] KURODA T, SAKUMA Y, SAKODA K, et al. Decoherence of single photons from an InAs/InP quantum dot emitting at a 1.3μm wavelength[J]. Physica Status Solidi, 2009, C6(4): 944-947.
[18] BENNETT A J, PATEL R B, SHIELDS A J, et al. Indistinguishable photons from a diode[J]. Applied Physics Letters, 2008, 92(19):193503. doi: 10.1063/1.2918841
[19] KOJIMA O, NAKATANI H, KITA T, et al. Photoluminescence characteristics of quantum dots with electronic states interconnected along growth direction[J]. Journal of Applied Physics, 2008, 103(11):113504. doi: 10.1063/1.2936320
[20] GAYRAL B, GÉRARD J M, LEGRAND B, et al. Optical study of GaAs/AlAs pillar microcavities with elliptical cross section[J]. App-lied Physics Letters, 1998, 72(12): 1421-1423. doi: 10.1063/1.120582