[1] LANZAGORTA M. Quantum radar[J]. Synthesis Lectures on Quantum Computing, 2011, 3(1): 1-139.
[2] BARZANJEH S, GUHA S, WEEDBROOK C, et al. Microwave quantum illumination[J]. Physical Review Letters, 2015, 114(8): 080503. doi: 10.1103/PhysRevLett.114.080503
[3] LLOYD S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science, 2008, 321(5895):1463-1465.
[4] SVIRIDOV K N, USTINOV N D. Quantum statistics of the photocurrent in an optimal light detector under atmospheric "seeing" condi-tions[J]. Soviet Journal of Quantum Electronics, 1979, 9(9):1140-1144.
[5] TAN S H, ERKMEN B I, GIOVANNETTI V, et al. Quantum illumination with gaussian states[J]. Physical Review Letters, 2008, 101(25):253601. doi: 10.1103/PhysRevLett.101.253601
[6] HYDE IV M W, BASU S, VOELZ D G, et al. Experimentally gene-rating any desired partially coherent Schell-model source using phase-only control[J]. Journal of Applied Physics, 2015, 118(9):4084-4093.
[7] ZHANG Z, TENGNER M, ZHONG T, et al. Entanglement's benefit survives an entanglement-breaking channel[J]. Physical Review Le-tters, 2013, 111(1): 010501. doi: 10.1103/PhysRevLett.111.010501
[8] LOPAEVA E D, BERCHERA I R, DEGIOVANNI I P, et al. Experimental realization of quantum illumination[J]. Physical Review Le-tters, 2013, 110(15):153603. doi: 10.1103/PhysRevLett.110.153603
[9] SANZ M, LAS H U, GARCÍA-RIPOLL J J, et al. Quantum estimation methods for quantum illumination[J]. Physical Review Letters, 2016, 118(7):070803.
[10] BARZANJEH S, GUHA S, WEEDBROOK C, et al. Quantum illumination at the microwave wavelengths[J]. Physics, 2015, 171(6):1029-1045.
[11] MALIK M, MAGAÑA-LOAIZA O S, BOYDR W. Quantum-secured imaging[J]. Applied Physics Letters, 2012, 101(24): 241103.
[12] GENOVESE M. Real applications of quantum imaging[J]. Journal of Optics, 2016, 18(7):073002. doi: 10.1088/2040-8978/18/7/073002
[13] ZHOU Q, DONG S, ZHANG W, et al. Frequency-entanglement preparation based on the coherent manipulation of frequency nondegenerate energy-time entangled state[J]. Journal of the Optical Society of America, 2014, B31(8): 1801-1806.
[14] XIAO L, WANG C, ZHANG W, et al. Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs[J]. Physical Review, 2008, A77(4): 042315.
[15] ARAHIRA S, NAMEKATA N, KISHIMOTO T, et al. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide[J]. Optics Express, 2011, 19(17): 16032-16043.
[16] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046. doi: 10.1103/PhysRevLett.59.2044
[17] RARITY J G, TAPSTER P R, LOUDON R. Non-classical interfe-rence between independent sources[J]. Journal of Optics, 2005, B7(7): S171-S175.
[18] MIYAMOTO Y, KUGA T, BABA M, et al. Measurement of ultrafast optical pulses with two-photon interference[J]. Optics Letters, 1993, 18(11): 900-902. doi: 10.1364/OL.18.000900
[19] MOSCHANDREOU E, GARCIA J I, ROLLICK B J, et al. Experimental study of Hong-Ou-Mandel interference using independent phase randomized weak coherent states[J]. Journal of Lightwave Technology, 2018, 36(17): 3752-3759. doi: 10.1109/JLT.2018.2850282
[20] OU Z Y, GAGE E C, MAGILL B E, et al. Fourth-order interfe-rence technique for determining the coherence time of a light beam[J]. Journal of the Optical Society of America, 1989, B6(1): 100-103.