[1] 杜健准, 高向东, 黎扬进, 等. 基于改进TLD算法的激光视觉传感型焊缝跟踪[J]. 激光技术, 2021, 45(3): 292-297.DU J Zh, GAO X D, LI Y J, et al. A laser vision sensing method for seam tracking based on an improved TLD algorithm[J]. Laser Technology, 2021, 45(3): 292-297(in Chinese).
[2] YANG L, WANG H X, HUO B Y, et al. An automatic welding defect location algorithm based on deep learning[J]. NDT & E International, 2021, 120: 102435.
[3] PAN H H, PANG Z J, WANG Y W, et al. A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects[J]. IEEE Access, 2020, 8: 119951-119960. doi: 10.1109/ACCESS.2020.3005450
[4] 黄威威, 游德勇, 高向东, 等. 基于相关分析和神经网络的激光焊接稳态识别[J]. 激光技术, 2022, 46(3): 312-319.HUANG W W, YOU D Y, GAO X D, et al. Laser welding steady status recognition method based on correlation analysis and neural network[J]. Laser Technology, 2022, 46(3): 312-319(in Chinese).
[5] 杜亮亮, 高向东, 张南峰, 等. 激光焊接裂纹磁光成像频域特征分析[J]. 激光技术, 2020, 44(2): 226-231.DU L L, GAO X D, ZHANG N F, et al. Analysis on frequency domain characteristics of magneto-optical imaging of laser welding crack[J]. Laser Technology, 2020, 44(2): 226-231(in Chinese).
[6] 周晓虎, 高向东, 杜亮亮, 等. 基于FGT-FBP重构算法的焊接缺陷检测[J]. 焊接学报, 2020, 41(2): 48-52.ZHOU X H, GAO X D, DU L L, et al. Detection of weld defects based on FGT-FBP reconstruction algorithm research on the weld and pores of glass laser welding based on response surface method[J]. Transactions of the China Welding Institution, 2020, 41(2): 48-52(in Chinese).
[7] 莫玲, 高向东, 萧振林, 等. 微间隙焊缝磁光图像增强方法[J]. 焊接技术, 2015, 44(6): 17-22.MO L, GAO X D, XIAO Zh L, et al. Enhancement method of micro-gap weld magneto-optical image[J]. Welding Technology, 2015, 44(6): 17-22(in Chinese).
[8] MA N J, GAO X D, WANG C Y, et al. A novel detection of weld defects by magneto-optical imaging under combined magnetic field[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2021, 63(12): 704-711.
[9] HE X, WANG T Q, WU K X, et al. Automatic defects detection and classification of low carbon steel WAAM products using improved remanence/magneto-optical imaging and cost-sensitive convolutional neural network[J]. Measurement, 2021, 173: 108633.
[10] ZHAO J Q, ZENG K. Numerical simulation and fatigue properties of laser spot weld-bonding DP590 dual-phase steel joints[J]. Materials Transactions, 2021, 62(8): 1118-1123.
[11] THIERRY S, COLINCE W, PASCAL N E, et al. Shock filter coupled with a high-order PDE for additive noise removal and image quality enhancement[J]. Array, 2021, 12: 100105.
[12] KANG S H, KIM J Y. Application of fast non-local means algorithm for noise reduction using separable color channels in light microscopy images[J]. International Journal of Environmental Research and Public Health, 2021, 18(6): 2903-2909.
[13] 孙思亮, 刘怀山. 基于曲波变换和快速非局部均值的地震数据随机噪声压制[J]. 工程地球物理学报, 2021, 18(2): 153-161.SUN S L, LIU H Sh. Suppressing seismic random noise based on curvelet transform and fast non-local mean[J]. Chinese Journal of Engineering Geophysics, 2021, 18(2): 153-161(in Chinese).
[14] WANG W, LI L, HAN Y. Crack detection in shadowed images on gray level deviations in a moving window and distance deviations between connected components[J]. Construction and Building Materials, 2021, 271: 121885.
[15] 李镇锋, 陈晓荣, 陈梦华, 等. 基于图像熵和傅里叶变换的复杂背景分割[J]. 软件工程, 2021, 24(11): 19-23.LI Zh F, CHEN X R, CHEN M H, et al. Complex background segmentation based on image entropy and Fourier transform[J]. Software Engineering, 2021, 24(11): 19-23(in Chinese).
[16] LIANG H, ZHAO X F, GUO Y. Noise reduction method for the ring LaserGyro signal based on ceemdan and the Savitzky-Golay algorithm[J]. Fluctuation and Noise Letters, 2022, 21(1): 2250005.