[1] BROWN A, OGLOZA A, TAYLOR L, et al. Continuous-wave laser damage and conditioning of particle contaminated optics[J]. Applied Optics, 2015, 54(16): 5216-5222. doi: 10.1364/AO.54.005216
[2] MATTHEWS M J, SHEN N, HONIG J, et al. Phase modulation and morphological evolution associated with surface-bound particle ablation[J]. Journal of the Optical Society of America, 2013, B30(12): 3233-3242.
[3] DEMOS S G, CARR C W, CROSS D A. Mechanisms of surface contamination in fused silica by means of laser-induced electrostatic effects[J]. Optics Letters, 2017, 42(13): 2643-2646. doi: 10.1364/OL.42.002643
[4] ASHE B, MARSHALL K L, GIACOFEI C, et al. Evaluation of cleaning methods for multilayer diffraction gratings[J]. Proceedings of the SPIE, 2006, 6403: 64030O. doi: 10.1117/12.694884
[5] ASHE B, GIACOFEI C, MYHRE G, et al. Optimizing a cleaning process for multilayer-dielectric-(MLD) diffraction grating[J]. Proceedings of the SPIE, 2008, 6720: 67200N.
[6] PHELPS M H, GUSHWA K E, TORRIE C I. Optical contamination control in the advanced LIGO ultra-high vacuum system[J]. Proceedings of the SPIE, 2013, 8885: 88852E. doi: 10.1117/12.2047327
[7] KARELL B A, PEREIRA A, BELIN C, et al. Impact of outgassing organic contamination on laser induced damage of optics[J]. Proceedings of the SPIE, 2009, 7504: 75040V. doi: 10.1117/12.836384
[8] MANGOTE B, TOVENA-PECAULT I, NAUPORT J. Study of the LIDT degradation of optical components by intentional organic contamination[J]. Proceedings of the SPIE, 2012, 8530:853025. doi: 10.1117/12.968573
[9] MIAO X X, YUAN X D, WANG H J, et al. Experiment of laser induced damage threshold for fused silica initiated at thin film contamination of Cu on surface[J]. High Power Laser and Particle Beams, 2008, 20(9): 1483-1486(in Chinese).
[10] MIAO X X, YUAN X D, WANG H J, et al. Experiment of laser induced damage for different thin film contamination of Cu and Fe on fused silica surface[J]. Optical & Optoelectronic Technology, 2009, 7(2): 90-93(in Chinese).
[11] PALMER J R. Continuous wave laser damage on optical components[J]. Optical Engineering, 1983, 22(4): 18-19.
[12] SHAH R S, REY J J, STEWART A F. Limits of performance: CW laser damage[J]. Proceedings of the SPIE, 2007, 6403: 640305.
[13] STUART B C, HERMAN S M, PERRY M D. Laser-induced da-mage in dielectrics with nanosecond to subpicosecond pulses I: experimental[J]. Physical Review Letters, 1994, 74(12): 2248-2251.
[14] STUART B C, FEIT M D, HERMAN S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review, 1996, B53(4): 1749-1761.
[15] RIEDE W, ALLENSPACHER P, HELMUT S, et al. Laser-induced hydrocarbon contamination in vacuum[J]. Proceedings of the SPIE, 2005, 5991: 59910H.
[16] MIAO X X, YUAN X D, LV H B, et al. Contamination in beampath and laser induced damage of optics in high power laser system[J]. High Power Laser and Particle Beam, 2015, 27(3): 256-261(in Chinese).
[17] YANG L, XIANG X, MIAO X, et al. Influence of outgassing orga-nic contamination on the transmittance and laser-induced damage of SiO2 sol-gel antireflection film[J]. Optical Engineering, 2015, 54(12): 126101. doi: 10.1117/1.OE.54.12.126101
[18] WU P, FAN Y R, GUO J W, et al. High reflectivity aluminum film processed by nanosecond pulse laser[J]. Laser Technology, 2019, 43(6): 779-783(in Chinese).
[19] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 11551 2003(E) test method for absorptance of optical laser components[S]. Geneva, Switzerland: International Organization for Standardization, 2003: 17-19.
[20] LI B Ch, GONG Y. Review of cavity ring-down techniques for high reflectivity measurements[J]. Laser & Optoelectronics Progerss, 2010, 47(2): 31-41(in Chinese).
[21] JIAO Z L, YANG D Sh, PANG H W. Experimental study on the optical effect of molecular contamination[J]. Spacecraft Environment Engineering, 2009, 26(1): 17-20(in Chinese).