[1] 李强, 闫光虎, 张玉成, 等. NG含量对改性单基发射药燃烧性能的影响[J]. 火炸药学报, 2012, 35(1): 73-76.LI Q, YAN G H, ZHANG Y Ch, et al. Effect of NG content on burning performance of modified sing-base gun propellant[J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 73-76(in Chin-ese).
[2] THOMAS J C, MORROW G R, DILLIER C A M, et al. Comprehensive study of ammonium perchlorate particle size/concentration effects on propellant combustion[J]. Journal of Propulsion and Power, 2019, 36(1): 1-6.
[3] 郝海霞, 裴庆, 赵凤起, 等. 固体推进剂激光点火性能研究综述[J]. 含能材料, 2009, 17(4): 491-498.HAO H X, PEI Q, ZHAO F Q, et al. Summarization of laser ignition characteristics of solid propellant[J]. Chinese Journal of Energetic Materials, 2009, 17(4): 491-498 (in Chinese).
[4] 张陆, 王霆威, 王晓军, 等. 激光敏感型含能配合物类起爆药研究进展[J]. 含能材料, 2022, 30(4): 385-395.ZHANG L, WANG T W, WANG X J, et al. Review on laser sensitive energetic complex primary explosives[J]. Chinese Journal of Energetic Materials, 2022, 30(4): 385-395 (in Chinese).
[5] 刘彦汝, 孙杰, 金波, 等. 360 nm紫外激光辐照下HMX晶体的微观结构变化[J]. 含能材料, 2021, 29(12): 1208-1215.LIU Y R, SUN J, JIN B, et al. Microstructure changes of HMX crystals irradiated by 360 nm UV laser[J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1208-1215 (in Chinese).
[6] 伍俊英, 刘嘉锡, 杨利军, 等. 不同频率飞秒激光脉冲序列加工炸药过程安全性的数值计算[J]. 含能材料, 2021, 29(3): 192-201.WU J Y, LIU J X, YANG L J, et al. Numerical calculation of the safety of processing explosives with femtosecond laser sequence with different frequencies[J]. Chinese Journal of Energetic Materials, 2021, 29(3): 192-201.
[7] GOTTFRIED J L. Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles[J]. Applied Optics, 2012, 51(7): B13-B21. doi: 10.1364/AO.51.000B13
[8] KIMBLIN C, TRAINHAM R, CAPELLE G A, et al. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations[J]. AIP Advances, 2017, 7(9): 095208. doi: 10.1063/1.4999793
[9] HAUER M, FUNK D J, LIPPERT T, et al. Time resolved study of the laser ablation induced shockwave[J]. Thin Solid Films, 2004, 453/454(4): 584-588.
[10] LUSSELL F C D, HARMON R S, MCNESBY K L, et al. Laser-induced breakdown spectroscopy analysis of energetic materials[J]. Applied Optics, 2003, 42(30): 6148-6152. doi: 10.1364/AO.42.006148
[11] ZHANG Zh, WANG A, WU J, et al. Spatial confinement effects of bubbles produced by laser ablation in liquids[J]. AIP Advances, 2019, 9(12): 125048. doi: 10.1063/1.5127261
[12] 葛一凡, 陆旭, 刘玉柱. 基于激光诱导击穿光谱和神经网络的蛋壳研究[J]. 激光技术, 2022, 46(4): 532-537.GE Y F, LU X, LIU Y Zh. Research on eggshell via laser-induced breakdown spectroscopy and neural network[J]. Laser Technology, 2022, 46(4): 532-537(in Chinese).
[13] GOTTFRIED J L. Influence of exothermic chemical reactions on laser-induced shock waves[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21452-21466. doi: 10.1039/C4CP02903H
[14] GOTTFRIED J L. Laboratory-scale method for estimating explosive performance from laser-induced shock waves[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 674-681. doi: 10.1002/prep.201400302
[15] COLLINS E S, GOTTFRIED J L. Laser-induced deflagration for the characterization of energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 592-602. doi: 10.1002/prep.201700040
[16] KALAM S A, MURTHY N L, MATHI P, et al. Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1535-1546. doi: 10.1039/C7JA00136C
[17] BISS M M, BROWN K E, TILGER C F. Ultra-high fidelity laser-induced air shock from energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(3): 396-405. doi: 10.1002/prep.201900130
[18] 王茜蒨, 赵宇, 卢小刚, 等. 激光诱导击穿光谱与拉曼光谱技术在危险物检测中的研究进展[J]. 光谱学与光谱分析, 2017, 37(8): 2430-2434.WANG X Q, ZHAO Y, LU X G, et al. Progress in laser induced breakdown spectroscopy and Raman spectroscopy for hazardous material detection[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2430-2434 (in Chinese).
[19] 郭文灿, 郑贤旭, 张旭, 等. 含铝炸药在激光烧蚀下的发射光谱分布及瞬态温度测量[J]. 含能材料, 2018, 26(8): 671-676.GUO W C, ZHENG X X, ZHANG X, et al. Emission spectrum distribution and transient temperature measurement of aluminized explosives under laser ablation[J]. Chinese Journal of Energetic Materials, 2018, 26(8): 671-676 (in Chinese).
[20] VAPNIK V. The nature of statistical learning theory[M]. Berlin, Germany: Springer, 2000: 15-174.