[1] LI Z W, WANG X, SHEN Zh H, et al. Numerical simulation of millisecond laser-induced damage in silicon-based positive-intrinsic-negative photodiode[J]. Applied Optics, 2012, 51(14): 2759-2766. doi: 10.1364/AO.51.002759
[2] LI Z W, WANG X, SHEN Zh H, et al. Mechanisms for the millisecond laser-induced functional damage to silicon charge-coupled imaging sensors[J]. Applied Optics, 2015, 54(3): 378-388. doi: 10.1364/AO.54.000378
[3] ABBOTT M, COTTER J. Optical and electrical properties of laser texturing for high-efficiency solar cells[J]. Progress in Photovoltaics Research & Applications, 2006, 14(3): 225-235.
[4] DANG C, LABIE R, TOUS L, et al. Investigation of laser ablation induced defects in crystalline silicon solar cells[J]. Energy Procedia, 2014, 55: 649-655. doi: 10.1016/j.egypro.2014.08.040
[5] BASHIRI H, KARAMI M A, MOHAMMADNEJAD S. Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces[J]. Chinese Physics, 2017, B26(10): 108801.
[6] BONSE J, BAUDACH S, KRVGER J, et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics, 2014, A74(1): 19-25.
[7] BONSE J, BRZEZINKA K W, MEIXNER A J. Modifying single-crystalline silicon by femto-second laser pulses: An analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy[J]. Applied Surface Science, 2004, 221(1/4): 215-230. doi: 10.1016/S0169-4332(03)00881-X
[8] CROUCH C H, CAREY J E, WARRENDER J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters, 2004, 84(11): 1850. doi: 10.1063/1.1667004
[9] DALILI A, TAN B, VRNKATAKRISHNAN K. Silicon wafer surface patterning using femtosecond laser irradiation below ablation threshold[J]. Optics and Lasers in Engineering, 2010, 48(3): 346-353. doi: 10.1016/j.optlaseng.2009.10.008
[10] SIVAKUMAR M, TAN B, VENKATAKRISHNAN K. Enhancement of silicon nanostructures generation using dual wavelength double pulse femtosecond laser under ambient condition[J]. Journal of Applied Physics, 2010, 107(4): 044307. doi: 10.1063/1.3309422
[11] ZHAO X, SHIN Y C. Ablation enhancement of silicon by ultrashort double-pulse laser ablation[J]. Applied Physics Letters, 2014, 105(11): 111907. doi: 10.1063/1.4896350
[12] TAO H Y, CHEN R C, SONG X W, S, et al. Femtosecond laser pulse energy accumulation optimization effect on surface morphology of black silicon[J]. Acta Physica Sinica, 2017, 66(6): 067902(in Chinese).
[13] MAO S S, MAO X L, GREIF R, et al. Simulation of infrared picosecond laser-induced electron emission from semiconductors[J]. Applied Surface Science, 1998, 127/129: 206-211. doi: 10.1016/S0169-4332(97)00633-8
[14] THORSTENSEN J, FOSS S E. Temperature dependent ablation threshold in silicon using ultrashort laser pulses[J]. Journal of Applied Physics, 2012, 112(10): 103514. doi: 10.1063/1.4766380
[15] CHAREE W, TANGWARODOMNUKUN V, DUMKUM C. Laser ablation of silicon in water under different flow rates[J]. The International Journal of Advanced Manufacturing Technology, 2014, 78(1/4): 19-29.
[16] GALASSO G, KALTENBACHER M, TOMASELLI A, et al. A unified model to determine the energy partitioning between target and plasma in nanosecond laser ablation of silicon[J]. Journal of Applied Physics, 2015, 117(12): 1-6.
[17] LI T, ZHOU C, LIU Z, et al. Computational and experimental study of nanosecond laser ablation of crystalline silicon[J]. International Communications in Heat and Mass Transfer, 2011, 38(8): 1041-1043. doi: 10.1016/j.icheatmasstransfer.2011.05.010
[18] SUN W, QI H, FANG Z, et al. Nanosecond laser pulse induced concentric surface structures on SiO2 layer[J]. Optics Express, 2014, 22(3): 2948-2954. doi: 10.1364/OE.22.002948
[19] WANG X, QIN Y, WANG B, et al. Numerical and experimental study of the thermal stress of silicon induced by a millisecond laser[J]. Applied Optics, 2011, 50(21): 3725-3732. doi: 10.1364/AO.50.003725
[20] CHOI S, JHANG K Y. Initiation time of near-infrared laser-induced slip on the surface of silicon wafers[J]. Applied Physics Letters, 2014, 104(25): 251604. doi: 10.1063/1.4885385
[21] CHOI S, JHANG K Y. In situ detection of laser-induced slip initiation on the silicon wafer surface[J]. Optics Letters, 2014, 39(14): 4278-4281. doi: 10.1364/OL.39.004278
[22] JIA Z Ch, LI Z W, ZHOU J, et al. Slip on the surface of silicon wafers under laser irradiation: Scale effect[J]. Chinese Physics, 2017, B26(11): 116102.
[23] WANG B, QIN Y, NI X W, et al. Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films[J]. Applied Optics, 2010, 49(29): 5537-5544. doi: 10.1364/AO.49.005537
[24] DONNELLY T, LUNNEY J G, AMORUSO S, et al. Double pulse ultrafast laser ablation of nickel in vacuum[J]. Journal of Applied Physics, 2009, 106(1): 013304. doi: 10.1063/1.3159010
[25] SALLEO A, SANDS T, GÉNIN F Y. Machining of transparent materials using an IR and UV nanosecond pulsed laser[J]. Applied Physics, 2000, A71(6): 601-608.
[26] HATANO M, MOON S, LEE M, et al. Excimer laser-induced temperature field in melting and resolidification of silicon thin films[J]. Journal of Applied Physics, 1999, 87(1): 36-43. doi: 10.1152/jappl.1999.87.1.36
[27] TAKASUKA E, TOKIZAKI E, TERASHIMA K, et al. Emissivity of liquid silicon in visible and infrared regions[J]. Journal of Applied Physics, 1997, 81(9): 6384-6389. doi: 10.1063/1.364418
[28] LV X M, PAN Y X, JIA Z Ch, et al. Surface damage induced by a combined millisecond and nanosecond laser[J]. Applied Optics, 2017, 56(17): 5060-5067. doi: 10.1364/AO.56.005060
[29] RAVINDRA N M, RAVINDRA K, MAHENDRA S, et al. Modeling and simulation of emissivity of silicon-related materials and structures[J]. Journal of Electronic Materials, 2003, 32(10): 1052-1058. doi: 10.1007/s11664-003-0088-0
[30] LI Z W, ZHANG H Ch, SHEN Z H, et al. Time-resolved temperature measurement and numerical simulation of millisecond laser irradiated silicon[J]. Journal of Applied Physics, 2013, 114(3): 033104. doi: 10.1063/1.4815872
[31] CHOI S, JHANG K Y. Thermal damages on the surface of a silicon wafer induced by a near-infrared laser[J]. Optical Engineering, 2014, 53(1): 017103. doi: 10.1117/1.OE.53.1.017103
[32] WANG X, QIN Y, LI Z W, et al. The interaction and the surface crack of single-crystal silicon induced by a millisecond laser[J]. Laser Physics, 2012, 22(10): 1627-1634. doi: 10.1134/S1054660X12100234
[33] WANG X, SHEN Zh H, LU J, et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes[J]. Journal of Applied Physics, 2010, 108(3): 033103. doi: 10.1063/1.3466996
[34] MAO X L, CHAN W T, CAETANO M, et al. Preferential vaporization and plasma shielding during nano-second laser ablation[J]. Applied Surface Science, 1996, 96/98: 126-130. doi: 10.1016/0169-4332(95)00420-3
[35] PAN Y X, LV X M, ZHANG H Ch, et al. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays[J]. Optics Letters, 2016, 41(12): 2807-2810. doi: 10.1364/OL.41.002807
[36] WANG X, ZHU D H, SHEN Zh H, et al. Surface damage morphology investigations of silicon under millisecond laser irradiation[J]. Applied Surface Science, 2010, 257(5): 1583-1588. doi: 10.1016/j.apsusc.2010.08.098