[1] HOWARD J N, GARING J S.The transmission of the atmosphere in the infrared-a review[J]. Infrared Physics, 1962, 2(3): 155-173. doi: 10.1016/0020-0891(62)90048-9
[2] BLASER S, HOFSTETTER D, BECK M, et al. Free-space optical data link using Peltier-cooled quantum cascade laser[J]. Electronics Letters, 2001, 37(12): 778-780. doi: 10.1049/el:20010504
[3] SCHLIESSER A, PICQUÉ N, HÖNSCH T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449. doi: 10.1038/nphoton.2012.142
[4] KOSTEREV A, WYSOCKI G, BAKHIRKIN Y, et al. Application of quantum cascade lasers to trace gas analysis[J]. Applied Physics, 2008, 390(2): 165-176.
[5] PATEL C K N. Continuous-wave laser action on vibrational-rotational transitions of CO2[J]. Physical Review, 1964, A136(5): 1187-1194.
[6] YANG G L, LI D J, XIE J J, et al. High power repetitive TEA CO2 pulsed laser[J]. Laser Physics, 2012, 22(7): 1173-1176. doi: 10.1134/S1054660X12070158
[7] WAN Ch Y, YU Y N, LU Y, et al. Rotating spark gap switched discharge TEA CO2 laser with average power up to 12kW[J]. Proceedings of the SPIE, 2005, 5777: 426-432. doi: 10.1117/12.611161
[8] ZUO D L, LU H, CHENG Z H. Studies on a 100-Joule-class UV-preionized TEA CO2 laser[J]. Proceedings of the SPIE, 2005, 5777: 442-445. doi: 10.1117/12.611164
[9] QU Y Ch, LIU F M, HU X Y, et al. Miniature high-repetition-rate TEA CO2 laser with surface-wire-corona preionization[J]. Infrared Physics & Technology, 2000, 41(3): 139-142.
[10] HABERBERGER D, TOCHITSKY S, JOSHI C. Fifteen terawatt picosecond CO2 laser system[J]. Optics Express, 2010, 18(17): 17865-17875. doi: 10.1364/OE.18.017865
[11] POLYANSKIY M N, BABZIEN M, POGORELSKY I V. 100-terawatt CO2 laser: Design and current status[C]//In AIP Conference Proceedings. New York, USA: The American Institute of Physics, 2016: 110006.
[12] DUTOV A I, KULESHOV A A, MOTOVILOV S A, et al. High-power high optical quality RF-excited slab CO2-lasers[J]. Proceedings of the SPIE, 2001, 4351:104-110. doi: 10.1117/12.417695
[13] SHA P F, LU P, XIN, J G. High power RF excited diffusively cooled all-metal slab waveguide CO2 laser[J]. Proceedings of the SPIE, 2009, 7276: 72761C.
[14] FENG W, FENG H Y, JIA Sh H, et al. Engineering"eye-safe" CO2 laser rangefinder[J]. Laser Technology, 1999, 23(2): 82-85(in Chinese).
[15] FAIST J, CAPASSO F, SIVCO D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556. doi: 10.1126/science.264.5158.553
[16] BECK M, HOFSTETTER D, AELLEN T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305. doi: 10.1126/science.1066408
[17] DARVISH S R, SLIVKEN S, EVANS A, et al. Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~9.6μm [J]. Applied Physics Lett-ers, 2006, 88(20): 201114. doi: 10.1063/1.2205730
[18] MAULINI R, MOHAN A, GIOVANNINI M, et al. External cavity quantum-cascade laser tunable from 8.2 to 10.4μm using a gain element with a heterogeneous cascade[J]. Applied Physics Letters, 2006, 88(20): 201113. doi: 10.1063/1.2205183
[19] XIE F, CANEAU C, LEBLANC H P, et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ>10μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1200407. doi: 10.1109/JSTQE.2013.2240658
[20] BANDYOPADHYAY N, BAI Y, SLIVKEN S, et al. High power operation of λ~5.2-11μm strain balanced quantum cascade lasers based on the same material composition[J]. Applied Physics Lett-ers, 2014, 105(7): 071106. doi: 10.1063/1.4893746
[21] MADEY J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42(5): 1906-1913. doi: 10.1063/1.1660466
[22] ELIAS L R, FAIRBANK W M, MADEY J M J, et al. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field[J]. Physical Review Lett-ers, 1976, 36(13): 717-720. doi: 10.1103/PhysRevLett.36.717
[23] LI H T, JIA Q K, ZHANG Sh C, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics, 2017, C41(1): 018102.
[24] PETERSEN C R, MØLLER U, KUBAT I, et al. Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834. doi: 10.1038/nphoton.2014.213
[25] YU Y, ZHANG B, GAI X, S, et al. 1.8-10μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 2015, 40(6): 1081-1084. doi: 10.1364/OL.40.001081
[26] ZHAO Zh M, WU B, WANG X, et al. Mid-infrared supercontinuum covering 2.0-16μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 2017, 11(2): 1700005.
[27] CHAUHAN P, KUMAR A, KALRA Y. Mid-infrared broadband supercontinuum generation in a highly nonlinear rectangular core chalcogenide photonic crystal fiber[J]. Optical Fiber Technology, 2018, 46:174-178. doi: 10.1016/j.yofte.2018.10.004
[28] PIGEON J J, TOCHITSKY S Y, GONG C, et al. Supercontinuum generation from 2 to 20μm in GaAs pumped by picosecond CO2 laser pulses[J]. Optics Letters 2014, 39(11): 3246-3249. doi: 10.1364/OL.39.003246
[29] BEUTLER M, RIMKE I, BVTTNER E, et al. Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe2[J]. Optics Express, 2015, 23(3): 2730-2736. doi: 10.1364/OE.23.002730
[30] GAIDA C, GEBHARDT M, HEUERMANN T, et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 2018, 7: 94.
[31] WANG L, WU X Y, LI Zh, et al. Progress of the nonlinear crystal and device of the mid-infrared optical parametric oscillator[J]. Laser Technology, 2010, 35(4): 433-439(in Chinese).
[32] QIAN Ch P, DUAN X M, YAO B Q, et al. 11.4W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 2018, 26(23): 30195-30201. doi: 10.1364/OE.26.030195
[33] KOSTYUKOVA N Y, BOYKO A A, BADIKOV V, et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 2016, 41(15): 3667-3670. doi: 10.1364/OL.41.003667
[34] YANG F, YAO J Y, XU H Y, et al. Midinfrared optical parametric amplifier with 6.4-11μm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 2015, 27(10): 1100-1103. doi: 10.1109/LPT.2015.2407895
[35] JIA N, WANG Sh P, TAO X T. Research progress of mid- and far-infrared nonlinear optical crystals[J]. Acta Physica Sinica, 2018, 67(24): 244203(in Chinese).
[36] LIN X S, ZHANG G, YE N. Growth and characterization of BaGa4S7: A new crystal for mid-IR nonlinear optics[J]. Crystal Growth & Design, 2009, 9(2): 1186-1189.
[37] CHEN Sh J, HANG B Ch, NI Y B, et al. Growth of high quality CdSe single crystal by high-pressure melt method[J]. Journal of the chinese ceramic society, 2018, 46(4):518-523.
[38] YAO J Y, MEI D J, BAI L, et al. BaGa4Se7: A new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 2010, 49(20): 9212-9216. doi: 10.1021/ic1006742
[39] SCHUNEMANN P G, ZAWILSKI K T, POMERANZ L A, et al. Advances in nonlinear optical crystals for mid-infrared coherent sources[J]. Journal of the Optical Society of America, 2016, B33(11):D36-D43.
[40] BEUTLER M, RIMKE I, BVTTNER E, et al. Femtosecond mid-IR difference-frequency generation in LiInSe2 [J]. Optical Materials Express, 2013, 3(11): 1834-1838. doi: 10.1364/OME.3.001834
[41] BEUTLER M, RIMKE I, BVTTNER E, et al. 80MHz difference-frequency generation of femtosecond pulses in the mid-infrared using GaS0.4Se0.6[J]. Laser Physics Letters, 2013, 10(7): 075406. doi: 10.1088/1612-2011/10/7/075406
[42] BEUTLER M, RIMKE I, BVTTNER E, et al. Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources[J]. Optics Letters, 2014, 39(15): 4353-4355. doi: 10.1364/OL.39.004353
[43] MANI A A, SCHULTZ Z D, GEWIRTH A A, et al. Picosecond laser for performance of efficient nonlinear spectroscopy from 10 to 21μm [J]. Optics Letters, 2004, 29(3): 274-276.
[44] PUPEZA I, SANCHEZ D, ZHANG J, et al. High-power sub-two-cycle mid-infrared pulses at 100MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721-724. doi: 10.1038/nphoton.2015.179
[45] YUAN J H, CHEN Y, DUAN X M, et al. CdSe optical parametric oscillator operating at 12.07μm with 170mW output[J]. Optics & Laser Technology, 2017, 92: 1-4.
[46] WANG J, YUAN L G, ZHANG Y W, et al. Generation of 320mW at 10.20μm based on CdSe long-wave infrared crystal[J]. Journal of Crystal Growth, 2018, 491: 16-19. doi: 10.1016/j.jcrysgro.2018.03.012
[47] ALLIK T H, CHANDRA S, RINES D M, et al. Tunable 7-12μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP2 crystals[J]. Optics Letters, 1997, 22(9): 597-599. doi: 10.1364/OL.22.000597
[48] WUEPPEN J, NYGA S, JUNGBLUTH B, et al. 1.95μm-pumped OP-GaAs optical parametric oscillator with 10.6μm idler wavelength[J]. Optics Letters, 2016, 41(18): 4225-4228. doi: 10.1364/OL.41.004225
[49] MAIDMENT L, SCHUNEMANN P G, REID D T. Molecular fingerprint-region spectroscopy from 5 to 12μm using an orientation-pa-tterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 2016, 41(18): 4261-4264. doi: 10.1364/OL.41.004261
[50] WATSON M A, O'CONNOR M V, SHEPHERD D P, et al. Synchronously pumped CdSe optical parametric oscillator in the 9-10μm region[J]. Optics Letters, 2003, 28(20): 1957-1959. doi: 10.1364/OL.28.001957
[51] WANG Sh P, DAI Sh B, JIA N, et al. Tunable 7-12μm picosecond optical parametric amplifier based on a LiInSe2 mid-infrared crystal[J]. Optics Letters, 2017, 42(11): 2098-2101. doi: 10.1364/OL.42.002098
[52] MIYATA K, MARCHEV G, TYAZHEV A, et al. Picosecond mid-infrared optical parametric amplifier based on the wide-bandgap GaS0.4Se0.6 pumped by a Nd:YAG laser system at 1064nm[J]. Optics Letters, 2011, 36(10): 1785-1787. doi: 10.1364/OL.36.001785
[53] PICCOLI R, PIRZIO F, AGNESI A, et al. Narrow bandwidth, picosecond, 1064 nm pumped optical parametric generator for the mid-IR based on HgGa2S4[J]. Optics Letters, 2014, 39(16): 4895-4898. doi: 10.1364/OL.39.004895