[1] LEE B H, KIM Y H, PARK K S, et al. Interferometric fiber optic sensors[J]. Sensors, 2012, 12(3): 2467-2486. doi: 10.3390/s120302467
[2] LI Y Sh, ZHOU B, LI X Y. Phase modulation and demodulation of interferometric fiber-optic hydrophone using phase generated carrier techniques[J]. Journal of Transducer Technology, 2004, 23(2): 14-17(in Chinese).
[3] CAO J N, LI X Y, ZHANG L K, et al. Dynamic range analysis of Mach-Zehnder fiber optic interferometer using PGC homodyne detection scheme[J]. Journal of Harbin Engineering University, 1998, 19(5): 81-87(in Chinese).
[4] YIN J, LIU T, JIANG J, et al. Assembly-free-based fiber-optic micro-Michelson interferometer for high temperature sensing[J]. IEEE Photonics Technology Letters, 2016, 28(6): 625-628. doi: 10.1109/LPT.2015.2503276
[5] ZHANG R, JIANG Sh, YAN Q Zh, et al. All-fiber perimeter alarm system based on Mach-Zehnder interference[J]. Laser Technology, 2013, 37(3): 334-337(in Chinese).
[6] DANDRIDGE A, TVETEN A B, GIALLORENZI T G. Homodyne demodulation scheme for fiber optic sensors using phase generated ca-rrier[J]. IEEE Journal of Quantum Electronics, 1982, 18(10): 1647-1653. doi: 10.1109/JQE.1982.1071416
[7] WANG Z F, HU Y M, MENG Z, et al. Pseudo working-point control measurement scheme for acoustic sensitivity of interferometric fiber-optic hydrophones[J]. Chinese Optics Letters, 2008, 6(5): 381-383. doi: 10.3788/COL20080605.0381
[8] NI M, HU Y M, MENG Zh, et al. Dynamic range of fiber optic hydrophone using digitized phase generated carrier[J]. Laser & Opto-electronics Progress, 2005, 42(2): 33-37(in Chinese).
[9] WANG L, LI Y Q, ZHANG L X, et al. Research progress of phase demodulation in ϕ-OTDR system[J]. Laser Technology, 2019, 43(1): 69-74(in Chinese).
[10] CRANCH G A, NASH P J, KIRKENDALL C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19-30. doi: 10.1109/JSEN.2003.810102
[11] BO L H, LIAO Y B, ZHANG M, et al. The improvement on PGC demodulation method based on optical fiber interferometer sensors[J]. Acta Photonica Sinica, 2005, 34(9): 1324-1327(in Chin-ese).
[12] MA L, LIU Y, LI Y, et al. Analysis of frequency drift effects in the phase-generated carrier method[J]. Acta Photonica Sinica, 2013, 42(1): 34-37(in Chinese). doi: 10.3788/gzxb20134201.0034
[13] WANG G Q, XU T W, LI F, et al. PGC demodulation technique with high stability and low harmonic distortion[J]. IEEE Photonics Technology Letters, 2012, 24(23): 2093-2096. doi: 10.1109/LPT.2012.2220129
[14] HUANG S C, HUANG Y F, HWANG F H. An improved sensitivity normalization technique of PGC demodulation with low minimum phase detection sensitivity using laser modulation to generate carrier signal[J]. Sensors & Actuators, 2013, A191(2): 1-10.
[15] ZHANG S, ZHANG A L, PAN H G, et al. Eliminating light intensity disturbance with reference compensation in interferometers[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1888-1891. doi: 10.1109/LPT.2015.2444421
[16] HE J, WANG L, LI F, et al. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability[J]. Journal of Lightwave Technology, 2010, 28(22): 3258-3265.
[17] LI Y, SU X X, LIU Y, et al. A PGC demodulation method based on the fundamental frequency mixing[J]. Journal of Optoelectronics·Laser, 2012, 23(5): 933-938(in Chinese).
[18] ZHANG A L, WANG Y, GONG M J, et al. An improved algorithm of PGC demodulation method based on fundamental frequency mixing[J]. Acta Photonica Sinica, 2014, 43(2): 0206003(in Chin-ese). doi: 10.3788/gzxb20144302.0206003
[19] SUN W, YU M, CHANG T Y, et al. Research and improvement based in PGC demodulation method[J]. Acta Photonica Sinica, 2018, 47(8): 806004 (in Chinese). doi: 10.3788/gzxb20184708.0806004
[20] CHEN D S, HUANG X D, WANG H B, et al. PGC modulation based on PZT for fiber interferometric sensor[C]// Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). Shanghai, China: IEEE, 2012: 148-150.
[21] NI M. Investigation of the key technologies of fiber optic hydrophone[D]. Beijing: Chinese Academy of Sciences, 2003: 65-68(in Ch-inese).