[1] KOCH J, MAZUMDER J. Rapid prototyping by laser cladding[J]. Proceedings of the SPIE, 1994, 2306: 556.
[2] MURPHY M L, STEEN W M, LEE C A. Novel prototyping technique for the manufacture of metallic components[C]// Proceeding of ICALEO'1994. Orlanda, USA: Laser Institute of America, 1994: 31-40.
[3] XIONG Y H, SMUGERESRY J E, AJDELSZTAJN L, et al. Fabrication of WC-Co cermets by 1aser engineered net shaping[J]. Materials Science and Engineering, 2008, A493(1/2):261-266.
[4] QIU C L, RAVI G A, DANCE C, et al. Fabrication of large Ti-6AI-4V structures by direct laser deposition[J]. Journal of Alloys and Compounds, 2015, 629:35l-361.
[5] ZHONG M L, NING G Q, LIN W J. Research and development on laser direct manufacturing metallic components[J]. Laser Technology, 2002, 26(5):388-391(in Chinese).
[6] HUANG S H, LIU P, MOKASDAR A, et al. Additive manufacturing and its societal impact: A literature review[J]. International Journal of Advanced Manufacturing Technology, 2013, 67(5/8):1191-1203.
[7] FRAZIER W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering & Performance, 2014, 23(6):1917-1928.
[8] GUO N, LEU M C. Additive manufacturing: Technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3):215-243.
[9] TABERNERO I, LAMIKIZ A, UKAR E, et al. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding[J]. Journal of Materials Processing Technology, 2010, 210(15):2125-2134. doi: 10.1016/j.jmatprotec.2010.07.036
[10] KUMAR A, PAUL C P, PADIYAR A S, et al. Numerical simulation of laser rapid manufacturing of multi-layer thin wall using an improved mass addition approach[J]. Numerical Heat Transfer, 2014, A65(9):885-910.
[11] GU D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: Materials[J]. Processes and Mechanisms, 2012, 57(3):133-164.
[12] CONG W, NING F. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel[J]. International Journal of Machine Tools & Manufacture, 2017, 121:61-69.
[13] NARKHADE S S, RATHI M G. Additive manufacturing of metals: A review [J].Journal of Advances in Science and Technology, 2017, 13(1): 253-258.
[14] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components—process, structure and properties [J]. Progress in Materials Science, 2018, 92:112-224. doi: 10.1016/j.pmatsci.2017.10.001
[15] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals [J].Acta Materialia, 2016, 117:371-392. doi: 10.1016/j.actamat.2016.07.019
[16] LIU R Ch, YANG Y Q, WANG D. Research of upper surface roughness of metal parts fabricated by selective laser melting [J]. Laser Technology, 2013, 37(4):425-430(in Chinese).
[17] TAN H, HU G, ZHANG F Y, et al. Formation mechanism of adhering powder and improvement of the surface quality during laser solid forming [J]. International Journal of Advanced Manufacturing, 2016, 86(5/8):1329-1338
[18] GHARBI M, PEYRE P, GORNY C, et al. Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloy[J]. Journal of Materials Processing Technology, 2013, 213(5):791-800. doi: 10.1016/j.jmatprotec.2012.11.015
[19] GHARBI M, PEYRE P, GORNY C, et al. Influence of process conditions on surface finishes obtained with the direct metal deposition laser technique[J].Journal of Materials Processing Technology, 2013, 213(5):791-800. doi: 10.1016/j.jmatprotec.2012.11.015
[20] YUAN F B, WEI H Y, HUANG C, et al. The Taguchi experimental investigation on process energy efficiency of laser direct metal deposition [J]. Laser Technology, 2018, 42(1):24-29 (in Chinese).