[1] KRUPKE W F. Diode pumped alkali lasers (DPALs): A review (rev1) [J]. Progress in Quantum Electronics, 2012, 36(1): 4-28. doi: 10.1016/j.pquantelec.2011.09.001
[2] ZHDANOV B V, KNIZE R J. Review of alkali laser research and development [J]. Optical Engineering, 2013, 52(2): 021010.
[3] KRUPKE W F, BEACH R J, KANZ V K, et al. Resonance transition 795nm rubidium laser [J]. Optics Letters, 2003, 28(23): 2336-2338. doi: 10.1364/OL.28.002336
[4] ZHDANOV B V, EHRENREICH T, KNIZE R J. Highly efficient optically pumped cesium vapor laser [J]. Optics Communications, 2006, 260(2): 696-698. doi: 10.1016/j.optcom.2005.11.042
[5] GAVRIELIDES A, SCHLIE L A, LOPER R D, et al. Unstable resonators for high power diode pumped alkali lasers [J]. Proceedings of the SPIE, 2017, 10090: 100901M.
[6] ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Power degradation due to thermal effects in potassium diode pumped alkali laser [J]. Optics Communications, 2015, 341: 97-100. doi: 10.1016/j.optcom.2014.12.021
[7] AUSLENDER I, COHEN T, LEBIUSH E, et al. Optically-pumped Cs vapor lasers: Pump-to-laser beam overlap optimization [J]. Proceedings of the SPIE, 2017, 10254: 102540P.
[8] HURD E J, HOLTGRAVE J C, PERRAM G P. Intensity scaling of an optically pumped potassium laser [J]. Optics Communications, 2015, 357: 63-66. doi: 10.1016/j.optcom.2015.08.087
[9] HAN J H, WANG Y, CAI H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part Ⅱ) [J]. Optics Express, 2015, 23(7): 9508-9515. doi: 10.1364/OE.23.009508
[10] ENDO M. Possible repetitive pulse operation of diode-pumped alkali laser (DPAL) [J]. Proceedings of the SPIE, 2017, 10254: 102540T.
[11] HAGER G D, PERRAM G P. A three-level analytic model for alkali metal vapor lasers: Part Ⅰ. Narrowband optical pumping [J]. Applied Physics, 2010, B101: 45-56.
[12] BARMASHENKO B D, ROSENWAKS S, HEAVEN M C. Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions [J]. Optics Communications, 2013, 292: 123-125. doi: 10.1016/j.optcom.2012.11.044
[13] YACOBY E, WAICHMAN K, SADOT O, et al. Modeling of supersonic diode pumped alkali lasers [J]. Journal of the Optical Society of America, 2015, B32(9): 1824-1833.
[14] HAN J H, WANG Y, AN G F, et al. Investigation of physical features of both static and flowing-gas diode-pumped rubidium vapor lasers [J]. Proceedings of the SPIE, 2014, 9266: 92660P. doi: 10.1117/12.2072018
[15] MORAN P J, RICHARDS R M, RICE C A, et al. Near infrared rubidium 62P3/2, 1/2→62S1/2 laser [J]. Optics Communications, 2016, 374: 51-57. doi: 10.1016/j.optcom.2016.03.090
[16] BEACH R J, KRUPKE W F, KANZ V K, et al. End-pumped continuous-wave alkali vapor lasers: Experiment, model, and power scaling [J]. Journal of the Optical Society of America, 2004, B21(12): 2151-2163.
[17] KNIZE R J, ZHDANOV B V, SHAFFER M K. Photoionization in alkali lasers [J]. Optics Express, 2011, 19(8): 7894-7902. doi: 10.1364/OE.19.007894
[18] YANG Z N, WANG H Y, LU Q S, et al. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission [J]. Optics Express, 2011, 19(23): 23118-23131. doi: 10.1364/OE.19.023118
[19] ZHDANOV B V, SELL J, KNIZE R J. Multiple laser diode array pumped Cs laser with 48W output power [J]. Electronics Letters, 2008, 44(9): 582-583. doi: 10.1049/el:20080728
[20] BARMASHENKO B D, ROSENWAKS S. Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers [J]. Journal of the Optical Society of America, 2013, B30(5): 1118-1126.
[21] BARMASHENKO B D, ROSENWAKS S, Modeling of flowing gas diode pumped alkali lasers: Dependence of the operation on the gas velocity and on the nature of the buffer gas [J]. Optics Letters, 2012, 37(17): 3615-3617. doi: 10.1364/OL.37.003615
[22] BARMASHENKO B D, AUSLENDER I, YACOBY E, et al. Mo-deling of static and flowing-gas diode pumped alkali lasers [J]. Proceedings of the SPIE, 2016, 9729: 972904.
[23] ENDO M, YAMAMOTO T, YAMAMOTO F, et al. Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation [J]. Optical Engineering, 2018, 57(12): 1.
[24] ENDO M, NAGAOKA R, NAGAOKA H, et al. Wave-optics simulation of diode-pumped cesium vapor laser coupled with a simplified gas-flow model [J]. Japanese Journal of Applied Physics, 2018, 57(9): 092701-092708. doi: 10.7567/JJAP.57.092701
[25] PAGE R H, BEACH R J, KANZ V K, et al. Multimode-diode-pumped gas (alkali-vapor) laser [J]. Optics Letters, 2006, 31(3): 353-355. doi: 10.1364/OL.31.000353
[26] WANG Y, KASAMATSU T, ZHENG Y, et al. Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array [J]. Applied Physics Letters, 2006, 88(14): 141112. doi: 10.1063/1.2192975
[27] ZHDANOV B V, MAES C, EHRENREICH T, et al. Optically pumped potassium laser [J]. Optics Communications, 2007, 270(2): 353-355. doi: 10.1016/j.optcom.2006.09.037
[28] ZWEIBACK J, KOMASHKO A. High-energy transversely pumped alkali vapor laser [J]. Proceedings of the SPIE, 2011, 7915: 791509. doi: 10.1117/12.875725
[29] BOGACHEV A V, GARANIN S, DUDOV A, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation [J]. Quantum Electronics, 2012, 42(2): 95-98. doi: 10.1070/QE2012v042n02ABEH014734
[30] ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system [J]. Optics Communications, 2015, 354: 256-258. doi: 10.1016/j.optcom.2015.06.010
[31] PITZ G A, STALNAKER D M, GUILD E M, et al. Advancements in flowing diode pumped alkali lasers [J]. Proceedings of the SPIE, 2016, 9729: 972902.
[32] YACOBY E, AUSLENDER I, WAICHMAN K, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: Experimental and theoretical studies [J]. Optics Express, 2018, 26(14): 17814-17819. doi: 10.1364/OE.26.017814
[33] HAN J H, WANG Y, CAI H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: Part Ⅰ[J]. Optics Express, 2014, 22(11): 13988-14003. doi: 10.1364/OE.22.013988
[34] CAI H, WANG Y, XUE L P, et al. Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser [J]. Applied Physics, 2014, B117(4): 1201-1210.
[35] NATHAN D Z, GORDON D H, WOLFGANG R, et al. Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser [J]. Journal of the Optical Society of America, 2011, B28(5): 1088-1099.
[36] AN G F, WANG Y, HAN J H, et al. Optimization of physical conditions for a diode-pumped cesium vapor laser [J]. Optics Express, 2017, 25(4): 4335-4347. doi: 10.1364/OE.25.004335
[37] CAI H, YU Q, AN G F, et al. Temporally modulated laser with an alkali vapor amplifier [J]. Optics Letters, 2019, 44(7): 1778-1780. doi: 10.1364/OL.44.001778
[38] WANG S Y, LIU X X, YU Q, et al. Investigation of pernicious o-scillation inside a LD-pumped cesium vapor cell [J]. Journal of the Optical Society of America, 2018, B35(12): 2970-2976.
[39] WANG S Y, DAI K, HAN J H, et al. Dual-wavelength end-pumped Rb-Cs vapor lasers [J]. Applied Optics, 2018, 57(32): 9562-9570. doi: 10.1364/AO.57.009562
[40] YANG J, AN G F, HAN J H, et al. Theoretical study on amplified spontaneous emission (ASE) in a V-pumped thin-disk alkali laser [J]. Optics & Laser Technology, 2021, 142: 107130.