[1] GOOS F, HÄNCHEN H. A new and fundamental attempt at total reflection[J]. Annalen der Physik, 1947, 436(7):333-346.
[2] RENARD R H. Total reflection:A new evaluation of the Goos-Hänchen shift[J]. Journal of the Optical Society of America, 1964, 54(10):1190-1197. doi: 10.1364/JOSA.54.001190
[3] LAI H M, KWOK C W, LOO Y W, et al. Energy-flux pattern in the Goos-Hänchen effect[J]. Physical Review, 2000, E62(5):7330-7339. doi: 10.1103/physreve.62.7330
[4] ARTMANN K. Calculation of the lateral displacement of the total reflected beam[J]. Annalen der Physik, 1948, 437(1/2): 87-102.
[5] ZHAO B, GAO L. Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites[J]. Optics Express, 2009, 17(24):21433-21441. doi: 10.1364/OE.17.021433
[6] WANG X, YIN C, SUN J, et al. High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect[J]. Optics Express, 2013, 21(11):13380-13385. doi: 10.1364/OE.21.013380
[7] YI W, LI H, CAO Z, et al. Oscillating wave sensor based on the Goos-Hänchen effect[J]. Applied Physics Letters, 2008, 92(6):061117-061119. doi: 10.1063/1.2883929
[8] FELBACQ D, MOREAU A, SMAÂLI R. Goos-Hänchen effect in the gaps of photonic crystals[J]. Optics Letters, 2003, 28(18):1633-1635. doi: 10.1364/OL.28.001633
[9] WANG L G, ZHU S Y. Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals[J]. Optics Letters, 2006, 31(1):101-103. doi: 10.1364/OL.31.000101
[10] JIANG L, WANG Q, XIANG Y, et al. Electrically tunable Goos-Hänchen shift of light beam reflected from a graphene-on-dielectric surface[J]. IEEE Photonics Journal, 2013, 5(3):6500108. doi: 10.1109/JPHOT.2013.2260530
[11] FAN Y, SHEN N H, ZHANG F, et al. Electrically tunable Goos-Hänchen effect with graphene in the terahertz regime[J]. Advanced Optical Materials, 2016, 4(11):1824-1828. doi: 10.1002/adom.201600303
[12] MA P, GAO L. Large and tunable lateral shifts in one-dimensional PT-symmetric layered structures[J]. Optics Express, 2017, 25(9):9676-9688. doi: 10.1364/OE.25.009676
[13] WANG C, WANG F, CEN H, et al. Electrically tunable Goos-Hänchen shifts in weakly absorbing epsilon-near-zero slab[J]. Optical Materials Express, 2018, 8(4):718-726. doi: 10.1364/OME.8.000718
[14] XU G, XU Y, SUN J, et al. Tunable and nonreciprocal Goos-Hänchen shifts on reflection from a graphene-coated gyroelectric slab[J]. Physics Letters, 2016, A380(29):2329-2333. doi: 10.1016/j.physleta.2016.05.012
[15] FELBACQ D, MOREAU A, SMAÂLI R. Goos-Hänchen effect in the gaps of photonic crystals[J]. Optics Letters, 2003, 28(18):1633-1635. doi: 10.1364/OL.28.001633
[16] WEN J S, ZHANG J X, WANG L G, et al. Goos-Hänchen shifts in an epsilon-near-zero slab[J]. Journal of the Optical Society of America, 2017, B34(11):2310-2316. doi: 10.1364/JOSAB.34.002310
[17] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10):722-726. doi: 10.1038/nnano.2010.172
[18] WANG L G, CHEN H, ZHU S Y. Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab[J]. Optics Letters, 2005, 30(21):2936-2938. doi: 10.1364/OL.30.002936
[19] SHU W, REN Z, LUO H, et al. Brewster angle for anisotropic materials from the extinction theorem[J]. Applied Physics, 2007, A87(2):297-303.
[20] CASIRAGHI C, HARTSCHUH A, LIDORIKIS E, et al. Rayleigh imaging of graphene and graphene layers[J]. Nano Letters, 2007, 7(9):2711-2717. doi: 10.1021/nl071168m