[1] JONES K J. Progress in Na laser guide star adaptive optics and le-ssons learned[J].Proceedings of the SPIE, 2016, 9950:995011. doi: 10.1117/12.2236343
[2] SADICK N S, WEISS R. The utilization of a new yellow light laser (578nm) for the treatment of class Ⅰ red telangiectasia of the lower extremities[J]. Dermatologic Surgery, 2002, 28(1):21-25.
[3] KAPOOR V, KARPOV V, LINTON C, et al. Solid state yellow and orange lasers for flow cytometry[J]. Cytometry Part, 2008, A73(6):570-577.
[4] YUAN Y Zh, LI B, GUO X Y. Laser diode pumped Nd:YAG crystals frequency summing 589nm yellow laser[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(2):710-712. doi: 10.1016/j.ijleo.2015.10.077
[5] LIU Y, LIU Z, CONG Z, et al. Quasi-continuous-wave 589nm radiation based on intracavity frequency-doubled Nd:GGG/BaWO4, Raman laser[J]. Optics & Laser Technology, 2016, 81(28):184-188.
[6] FENG Y, CALIA D B, HACKENBERG W, et al. Design of a narrow band 589nm laser by direct Raman shift in single mode fiber[J]. Proceedings of the SPIE, 2006, 6272:62724A.
[7] LEE A J, PASK H M, OMATSU T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics, 2007, B88(4):539-544.
[8] WOODBURY E J, NG W K. Ruby laser operation in near IR[J]. Proceedings of the Institute of Radio Engineers, 1962, 50(11):2367.
[9] PIPER J A, PASK H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3):692-704. doi: 10.1109/JSTQE.2007.897175
[10] PASK H M. The design and operation of solid-state Raman lasers[J]. Progress in Quantum Electronics, 2003, 27(1):3-56. doi: 10.1016/S0079-6727(02)00017-4
[11] INNOCENZI M E, YURA H T, FINCHER C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers[J]. App-lied Physics Letters, 1990, 56(19):1831-1833. doi: 10.1063/1.103083
[12] KAMINSKⅡ A A, UEDA K I, EICHLER H J, et al. Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 2001, 194(1):201-206.
[13] CHEN Y F. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal.[J]. Optics Le-tters, 2004, 29(18):2172-2174. doi: 10.1364/OL.29.002172
[14] CHEN Y F. Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser[J]. Optics Le-tters, 2004, 29(11):1251-1253. doi: 10.1364/OL.29.001251
[15] CHEN Y F. High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser:influence of dopant concentration[J]. Optics Letters, 2004, 29(16):1915-1917. doi: 10.1364/OL.29.001915
[16] CHEN Y F. Efficient 1521nm Nd:GdVO4 Raman laser[J]. Optics Letters, 2004, 29(22):2632-2635. doi: 10.1364/OL.29.002632
[17] CHEN Y F. Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser[J]. Applied Physics, 2004, B78(6):685-687.
[18] JIANG P, DING X, LI B, et al. 9.80W and 0.54mJ actively Q-switched Nd:YAG/Nd:YVO4 hybrid gain intracavity Raman laser at 1176nm[J]. Optics Express, 2017, 25(4):3387-3393. doi: 10.1364/OE.25.003387
[19] WU J, WU Sh F, ZHANG G, et al. The influence of stree birefringence on output power of Nd:YVO4[J].Laser Technology, 2005, 29(6):649-651(in Chinese).
[20] DONG W W, LI L, SHI P, et al. Thermal effect of Nd:GdVO4 crystal end-pumped by fiber coupled diode laser.[J]. Laser Technology, 2009, 33(6):633-637(in Chinese).
[21] DEKKER P, PASK H M, SPENCE D J, et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5nm[J]. Optics Express, 2007, 15(11):7038-7046. doi: 10.1364/OE.15.007038
[22] LEE A J, PASK H M, OMATSU T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics, 2007, B88(4):539-544.
[23] LEE A J, PASK H M, DEKKER P, et al. High efficiency, multi-watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4[J]. Optics Express, 2008, 16(26):21958-21963. doi: 10.1364/OE.16.021958
[24] LEE A J, PASK H M, SPENCE D J, et al. Efficient 5.3W CW laser at 559nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser.[J]. Optics Letters, 2010, 35(5):682-684. doi: 10.1364/OL.35.000682
[25] LÜ Y F, CHENG W B, XIONG Z, et al. Efficient CW laser at 559nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4, laser under direct 880nm diode laser pumping[J]. Laser Physics Letters, 2010, 7(11):787-789. doi: 10.1002/lapl.v7:11
[26] LÜ Y F, ZHANG X H, LI Sh T, et al. All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal[J]. Optics Letters, 2010, 35(17):2964-2966.
[27] LEE A J, SPENCE D J, PIPER J A, et al. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible[J]. Optics Express, 2010, 18(19):20013-20018. doi: 10.1364/OE.18.020013
[28] XIA J, LÜ Y F, ZHANG X H, et al. All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths[J]. Laser Physics Letters, 2011, 8(1):21-23. doi: 10.1002/lapl.v8.1
[29] ZHU H Y, ZHANG G, DUAN Y M, et al. Compact continuous-wave Nd:YVO4 laser with self-raman conversion and sum frequency generation[J]. Chinese Physics Letters, 2011, 28(5):054202. doi: 10.1088/0256-307X/28/5/054202
[30] ANDREW J L, HELEN M P, JAMES A P, et al. Efficient, miniature, CW yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser[J]. Optics Letters, 2011, 36(8):1428-1430. doi: 10.1364/OL.36.001428
[31] LEE A J, PASK H M, PIPER J A, et al. 330mW CW yellow emi-ssion from miniature self-Raman laser based on direct HR-coated Nd: YVO4 crystal[C]//Conference on Lasers and Electro-Optics/Pacific Rim. New York, USA: IEEE, 2011: 1250-1252.
[32] LI X L, PASK H M, LEE A J, et al. Miniature wavelength-selectable Raman laser:new insights for optimizing performance[J]. Optics Express, 2011, 19(25):25623-25631.
[33] LIN J, PASK H M. Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880nm for high power infrared and visible output[J]. Applied Physics, 2012, B108(1):17-24.
[34] LI X, LEE A J, HUO Y, et al. Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser[J]. Optics Express, 2012, 20(17):19305-19312. doi: 10.1364/OE.20.019305
[35] TAN Y, FU X H, ZHAI P, et al. An efficient CW laser at 560nm by intracavity sum-frequency mixing in a self-Raman Nd:LuVO4 laser[J]. Laser Physics, 2013, 23(4):045806. doi: 10.1088/1054-660X/23/4/045806
[36] DUAN Y M, ZHU H Y, FENG Zh R, et al. Laser diode end-pumped Nd:YVO4 self-Raman laser at 559nm with sum-frequency mixing[J]. Chinese Journal of Lasers, 2013, 40(5):0502002(in Chinese). doi: 10.3788/CJL
[37] KORES C C, PASK H M, NETO J J, et al. Continuous yellow-orange laser based on a diode-side-pumped Nd3+: YVO4 self-Raman laser[C]//Advanced Solid State Lasers. Berlin, Germany: Optical Society of America, 2015: ATh2A.17.
[38] DEMIDOVICH A A, GRABTCHIKOV A S, LISINETSKⅡ V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser[J]. Optics Letters, 2005, 30(13):1701-1703. doi: 10.1364/OL.30.001701
[39] SHANG C. Research on intra-cavity double frequency and Q-switched Nd: YVO4 self-Raman laser at 588nm in-band pumped under 880nm[D].Tianjin: Tianjin University, 2014: 1-22(in Chin-ese).
[40] SU F F, ZHANG X Y, WANG Q P, et al. Diode pumped actively Q-switched Nd:YVO4 self-Raman laser[J]. Journal of Physics, 2006, D39(10):2090.
[41] DING Sh H, ZHANG X Y, WANG Q P, et al. Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal[J]. IEEE Journal of Quantum Electronics, 2006, D42(9):927-933.
[42] DING Sh H, ZHANG X Y, WANG Q P, et al. Numerical modelling of passively Q-switched intracavity Raman lasers[J]. Journal of Physics, 2007, D40(9):2736.
[43] DING Sh H, ZHANG X Y, WANG Q P, et al. Modeling of actively Q-switched intracavity Raman lasers[J]. IEEE Journal of Quantum Electronics, 2007, 43(8):722-729. doi: 10.1109/JQE.2007.901585
[44] DING S, WANG P, QING X, et al. Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers[J]. Applied Physics, 2011, B104(4):819-827.
[45] LIU Y N. Theoretical and experimental study on LD pumped pa-ssively Q-switched intracavity frequency-doubled Raman yellow laser[D]. Yantai: Yantai University, 2012: 1-11(in Chinese).
[46] LIU B, ZHANG X Y, WANG Q P, et al. Diode-pumped intracavity frequency-double Nd:YVO4 self-Raman yellow laser[J]. Acta Photonica Sinica, 2007, 36(10):1777-1780(in Chinese).
[47] ZHU H Y, DUAN Y M, ZHANG G, et al. Yellow-light generation of 5.7W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite[J]. Optics Letters, 2009, 34(18):2763-2765. doi: 10.1364/OL.34.002763
[48] ZHU H Y, DUAN Y M, ZHANG G, et al. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9W yellow light[J]. Optics Express, 2009, 17(24):21544-21550.
[49] OMATSU T, LEE A, PASK H M, et al. Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4, crystal[J]. Applied Physics, 2009, B97(4):799-804.
[50] ZHU H Y, ZHANG G, ZHANG Y J, et al. LD end-pumped c-cut Nd:YVO4 laser at 589nm generated by self-Raman conversion and frequency doubling[J]. Acta Physica Sinica, 2011, 60(9):373-377(in Chinese).
[51] GUO Y Y, ZHANG L, HUANG G, et al. High-power diode-end-pumped composite YVO4/Nd: YVO4/YVO4, self-Raman yellow laser[C]//Communications and Photonics Conference and Exhibition. New York, USA: IEEE, 2011: 1-6.
[52] DU Ch L, GUO Y Y, YU Y Q, et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559nm[J]. Optics & Laser Technology, 2013, 47(7):43-46.
[53] SU F F, ZHANG X Y, WANG W T, et al. Diode-pumped intracavity yellow-green Raman laser at 560nm with sum-frequency-generation[J]. Optics & Laser Technology, 2015, 66(6):122-124.
[54] SHEN G, LI Z H, HAN M. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4[J]. Optoelectronics Letters, 2016, 12(6):430-432.
[55] SPENCE D E, KEAN P N, SIBBETT W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser[J]. Optics Letters, 1991, 16(1):42-44.
[56] PENG J Y, ZHENG Y, ZHENG K, et al. Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser[J]. Optics Communications, 2012, 285(24):5334-5336.
[57] LI Z H, PENG J Y, YAO J Q, et al. Efficient self-stimulated Raman scattering with simultaneously self-mode-locking in a diode-pumped Nd:GdVO4 laser[J]. Applied Optics, 2016, 55(32):9000-9005.
[58] LI Z H, PENG J Y, YAO J Q, et al. The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4, 1176nm laser[J]. Optics & Laser Technology, 2017, 89(1):1-5.