[1] ZHANG L. The air-born blue-green laser radar for water depth information acquisition and processing methods research[D]. Dalian: Dalian Maritime University, 2016: 1-5(in Chinese).
[2] YE X S. Research on principle and data processing methods of airborne laser bathymetric technique[D]. Zhengzhou: PLA Information Engincering University, 2010: 1-2(in Chinese).
[3] REN L P, ZHAO J Sh, ZHAI G J, et al. Scanning-track computation and analysis for airborne laser depth sounding[J].Geomatics and Information Science of Wuhan University, 2002, 27(2):138-142(in Chinese).
[4] ZHAI G J, HUANG M T, OUYANG Y Zh, et al. Key techologies related to the development of airborne laser bathymetry system[J]. Hydrographic Surveying and Charting, 2014, 34(3):73-76(in Ch-inese).
[5] YANG H Y, LIANG Y H. Present situation and prospect of the bathymetry technology of airborne blue-green laser system for searching underwater objects[J]. Ome Information, 2013(12):6-10(in Ch-inese).
[6] FENG W B. Application in transmission underwater of blue and green laser[J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2000, 19(1):53-55(in Chinese).
[7] WAGNER W, ULLRICH A, DUCIC V, et al. Gaussian decomposition calibration of a novel small-footprint full-waveform digitizing airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2):100-112. doi: 10.1016/j.isprsjprs.2005.12.001
[8] ALLOUIS T, BAILLY B S, PASTOL Y, et al. Comparison of lidar waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals[J]. Earth Surface Processes Land, 2010, 35(6):640-650.
[9] ABADY L, BAILLY J S, BAGHDADI N, et al. Column contribution in lidar waveforms on bathymetry estimates[J]. Geoscience and Remote Sensing Letters, 2014, 11(4):813-817. doi: 10.1109/LGRS.2013.2279271
[10] XU G C. Research on airborne lidar waveform data processing and classifying[D]. Nanjing: Najing Forestry University, 2010: 13-17(in Chinese).
[11] YOUNG J P, SANG W D, HONG J K. Deconvolution of long-pulse LiDAR signals with matrix formulation[J]. Technical Note Applied Optics, 1997, 36(21):5158-5161.
[12] DOUGLASS A R, SCHOEBERL M R, KAWA S R, et al. Acomposite view of ozone evolution in the 1995-1996 northen winter polar vortex develope from airborne LiDAR and satellite observations[J]. Journal of Geophysical Research, 2001, 106(D9):9879-9895. doi: 10.1029/2000JD900590
[13] NEELAMANI R. NOWAK R, BARANIUK R. Model-based inverse halftoning with wavelet-vaguelette deconvolution[J]. International Comference on Image Processing, 2002, 3(3):973-976.
[14] BAHRAMPOUR A R, ASKARI A A. Fourier-wavelet regularized deconvolution(ForWaRD) for lidar systems based on TE-CO2 laser[J]. Optics Communications, 2006, 257(1):97-111. doi: 10.1016/j.optcom.2005.07.017
[15] JUTZI B, STILLA U. Range determination with waveform recording laser systems using a Wiener Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2):95-107. doi: 10.1016/j.isprsjprs.2006.09.001
[16] WU J, van AARDT J, ASNER G P. Acomparison of signal deconvolution algorithms based on small-footprint lidar waveform simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2402-2414. doi: 10.1109/TGRS.2010.2103080
[17] HARTMAN M, KENNEDY A B. Depth of closure over large regions using airborne bathymetric lidar[J]. Marine Gology, 2016, 379:52-63. doi: 10.1016/j.margeo.2016.05.012
[18] HALLERMEIER R J. A profile zonation for seasonal sand beaches from wave climate[J]. Coastal Engineering, 1981, 4(3):253-277.
[19] BIRKEMEIER W A. Field data on seaward limit of profile change[J]. Waterway Ports Harbor Coastal Ocean Engineering ASCE, 1985, 111(3):598-602. doi: 10.1061/(ASCE)0733-950X(1985)111:3(598)
[20] NICHOLLS R J, BIRKEMEIER W A, LEE G H. Evaluation of depth of closure using data from Duck, NC, USA[J]. Marine Geology, 1998, 148(1):179-201.
[21] ROBERTSON W, ZHANG K, WHITMAN D. Hurricane-induced beach change derived from airborne laser measurements near Panama City, Florida[J]. Marine Geology, 2007, 237(3):191-205.
[22] RICHTER K, MAAS H G, WESTFELD P, et al. An approach to determining turbidity and correcting for signal attenuation in airborne lidar bathymetry[J].PFG-Journal of Photogrammetry Remote Sensing & Geoinformation Science, 2017, 85(1):31-40.
[23] WANG Z H. Research and application of laser technique in navy[J]. Optoelectronic Technology and Information, 1998, 11(6):29-34(in Chinese).
[24] ZHU X, YANG K Ch, XU Q Y, et al. Airborne laser bathymetry phenomenological LiDAR equation[J]. Chinese Journal of Lasers, 1996, 22(3):273-278(in Chinese).
[25] HUANG M T, ZHAI G J, OUYANG Y Zh, et al. Wave correction in airborne laser hydrography[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4):389-392(in Chinese).
[26] WANG Y. Current status and development of airborne laser bathymetry technology[J]. Journal of Geomatics, 2014, 39(3):39-43(in Chinese).