[1] NG D, HUANG P Y, JENG Y R, et al. Nanoparticle removal mechanisms during post-CMP cleaning[J]. Electrochemical and Solid-State Letters, 2007, 10(8):H227-H231. doi: 10.1149/1.2739817
[2] ANDREEV V A, FREER E M, de LARIOS J M, et al. Silicon-wafer cleaning with aqueous surfactant-stabilized gas/solids suspensions[J]. Journal of the Electrochemical Society, 2011, 158(1):H55-H62. doi: 10.1149/1.3503572
[3] TSUNEMI A, HAGIWARA K, SAITO N, et al. Complete removal of paint from metal surface by ablation with a TEA CO2 laser[J]. Applied Physics, 1996, A63(5):435-439.
[4] VARGHESE I, CETINKAYA C. Non-contact removal of 60nm latex particles from silicon wafers with laser-induced plasma[J]. Journal of Adhesion Science and Technology, 2004, 18(7):795-806. doi: 10.1163/156856104840327
[5] KRUUSING A. Underwater and water-assisted laser processing:part 1-general features, steam cleaning and shock processing[J]. Optics and Lasers in Engineering, 2004, 41(2):307-327. doi: 10.1016/S0143-8166(02)00142-2
[6] CETINKAYA C, PERI M D M. Non-contact nanoparticle removal with laser induced plasma pulses[J]. Nanotechnology, 2004, 15(5):435-440. doi: 10.1088/0957-4484/15/5/006
[7] COHN D R, HACKER M P, LAX B, et al. Effects of pressure and magnetic field upon physical processes in laser-induced gas breakdown[J]. Journal of Applied Physics, 1975, 46(2):668-675. doi: 10.1063/1.321683
[8] KHAN F S, DAVIES J H, WILKINS J W. Quantum transport equations for high electric fields[J]. Physical Review, 1987, B36(36):2578-2597.
[9] MORGAN C G. Laser-induced breakdown of gases[J]. Reports on Progress in Physics, 1975, 38(5):621-665. doi: 10.1088/0034-4885/38/5/002
[10] CORDE S, PHUOC K T, LAMBERT G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1):1-58.
[11] LIU W, BERNHARDT J, THéBERGE F, et al. Spectroscopic characterization of femtosecond laser filament in argon gas[J]. Journal of Applied Physics, 2007, 102(3):033111. doi: 10.1063/1.2759887
[12] ALLAZADEH M R, BALÁZSI C. Reinforced Aluminum matrix composite application in friction material[J]. Recent Patents on Corrosion Science, 2013, 3(1):39-46. doi: 10.2174/22106839112029990006
[13] CASATI R, VEDANI M. Metal matrix composites reinforced by nano-particles-a review[J]. Metals, 2014, 4(1):65-83. doi: 10.3390/met4010065
[14] ALEEM S A E, HEIKAL M, MORSI W M. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica[J]. Construction and Building Materials, 2014, 59(59):151-160.
[15] SALLEO A. High-power laser damage in fused silica[D]. Berkeley, California, USA: University of California, 2001: 105.
[16] TUNNA L, KEARNS A, O'NEILL W, et al. Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355nm wavelengths[J]. Optics & Laser Technology, 2001, 33(3):135-143.
[17] ISRAELACHVILI J N. Intermolecular and surface forces:second edition[M].Burlington, MA, USA:Academic Press, 1991, 2(3):59-65.
[18] HEMLEY R J, MAO H K, BELL P M, et al. Raman spectroscopy of SiO2 glass at high pressure[J]. Physical Review Letters, 1986, 57(6):747-750. doi: 10.1103/PhysRevLett.57.747
[19] KIM D, OH B, JANG D, et al. Experimental and theoretical analysis of the laser shock cleaning process for nanoscale particle removal[J]. Applied Surface Science, 2007, 253(19):8322-8327. doi: 10.1016/j.apsusc.2007.02.119
[20] WANG Z M, ZENG X Y, HUANG W L. Status and prospect of laser cleaning procedure[J].Laser Technology, 2000, 24(2):68-73(in Chinese).
[21] VANDERWOOD R, CETINKAYA C. Nanoparticle removal from trenches and pinholes with pulsed-laser induced plasma and shock waves[J]. Journal of Adhesion Science and Technology, 2003, 17(1):129-147. doi: 10.1163/15685610360472484
[22] CHEN J F, ZHANG Y K, XU R J, et al. Experimental research of paint removement with a fast axis flow CO2 laser[J]. Laser Technology, 2008, 32(1):64-66(in Chinese).