[1] YOSHII Y, KUZE H, TAKEUCHI N. Long-path measurement of atmospheric NO2 with an obstruction flashlight and a charge-coupled-device spectrometer[J]. Applied Optics, 2003, 42(21):4362-4368. doi: 10.1364/AO.42.004362
[2] McCULLOCH M T, LANGFORD N, DUXBURY G. Real-time trace-level detection of carbon dioxide and ethylene in car exhaust gases[J]. Applied Optics, 2005, 44(14):2887-2894. doi: 10.1364/AO.44.002887
[3] KEAN A J, HARLEY R A, LITTLEJOHN D, et al. On-road measurement of ammonia and other motor vehicle exhaust emissions[J]. Environmental Science & Technology, 2000, 34(17):3535-3539.
[4] KESSLER W J, ALLEN M G, DAVIS S J, et al. Near-IR diode laser-based sensor for ppb-level water vapor in industrial gases[J]. Proceedings of the SPIE, 1999, 3537:139-149. doi: 10.1117/12.341026
[5] ANDERSON T N, LUCHT R P, BARRON-JIMENEZ R, et al. Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor[J]. Applied Optics, 2005, 44(8):1491-1502. doi: 10.1364/AO.44.001491
[6] KHORSANDI A, WILLER U, WONDRACZEK L, et al. In situ and on-line monitoring of CO in an industrial glass furnace by mid-infrared difference-frequency generation laser spectroscopy[J]. Applied Optics, 2004, 43(35):6481-6486. doi: 10.1364/AO.43.006481
[7] ZHANG J W, WANG Y L, XUE R, et al. Progress of advanced and practical NH3 measurement technology in atmospheric environment[J]. Transducer & Microsystem Technologies, 2013, 32(12):10-14(in Chinese).
[8] NAGALI V, CHOU S I, BAER D S, et al. Tunable diode-laser absorption measurements of methane at elevated temperatures[J]. Applied Optics, 1996, 35(21):4026-4032. doi: 10.1364/AO.35.004026
[9] FEHÉR M, MARTIN P A, ROHRBACHER A, et al. Inexpensive near-infrared diode-laser-based detection system for ammonia[J]. Applied Optics, 1993, 32(12):2028-2030. doi: 10.1364/AO.32.002028
[10] WEBBER M E, PUSHKARSKY M, PATEL C K N. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers[J]. Applied Optics, 2003, 42(12):2119-2126. doi: 10.1364/AO.42.002119
[11] BESSON J P, SCHILT S, ROCHAT E, et al. Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy[J]. Applied Physics, 2006, B85(2):323-328.
[12] LINS B, PFLAUM F, ENGELBRECHT R, et al. Absorption line strengths of 15NH3 in the near infrared spectral region[J]. Applied Physics, 2011, B102(2):293-301.
[13] PENG Y, ZHANG W, LI L, et al. Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection[J]. Spectrochimica Acta, 2009, A74(4):924-927.
[14] ENGELN R, BERDEN G, PEETERS R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Review of Scientific Instruments, 1998, 69(11):3763-3769. doi: 10.1063/1.1149176
[15] CLAPS R, ENGLICH F V, LELEUX D P, et al. Ammonia detection by use of near-infrared diode-laser-based over tone spectroscopy[J]. Applied Optics, 2001, 40(24):4387-4394. doi: 10.1364/AO.40.004387
[16] PEI Sh X, GAO X M, CUI F P, et al. Cavity enhanced absorption spectroscopy based on a tunable DFB diode laser[J]. Optics & Optoelectronic, 2004, 2(6):30-33(in Chinese).
[17] ENGELN R, MEIJER G. A Fourier transform cavity ring down spectrometer[J]. Review of Scientific Instruments, 1996, 67(8):2708-2713. doi: 10.1063/1.1147092
[18] WU Zh W, DONG Y T, ZHOU W D. Near infrared cavity enhanced absorption spectroscopy study of N2O[J]. Spectroscopy & Spectral Analysis, 2014, 34(8):2081-2084(in Chinese).