[1] XIA B, JIANG L, WANG S M, et al. Femtosecond laser drilling of micro-holes. Chinese Journal of Lasers, 2013, 40(2): 0201001(in Chinese).
[2] BAI L, ZHAO X L, LIU Y, et al. Optical fiber micro-hole sensor fabricated with femtosecond laser. Laser Technology, 2013, 37(1):101-104(in Chinese).
[3] YUAN Ch H, LI X H, TANG D Ch, et al. Influence of wavelength and atmosphere on laser induced microstructure of silicon surface. Laser Technology, 2010, 34(5):647-649(in Chinese).
[4] YE X, ZHOU M, YU Z, et al. Periodical micro-structure and parameter optimization of pyrolytic carbon surface induced by nanosecond laser.Laser Technology,2013,37(4): 537-540(in Chinese).
[5] KANG X M, YU L, YANG G F, et al. Experimental research of increase-friction characteristics of no-match friction-pair surface based on laser micro-modelling. Laser Technology, 2013, 37(4): 449-454(in Chinese).
[6] CHEN Zh D, WU Q, YANG M, et al. Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases. Laser and Particle Beams, 2013, 31(3):539-545.
[7] CHEN Zh D, WU Q, YANG M, et al. Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air.Optics Express, 2013,21(18):21329-21336.
[8] LORAZO P, LEWIS L J, MEUNIER M. Short-pulse laser ablation of solids: from phase explosion to fragmentation. Physical Review Letters, 2003, 91(22): 225502.
[9] ROETERDINK W G, JUURLING L B F, VAUGHAN O P H, et al. Coulomb explosion in femtosecond laser ablation of Si (111). Applied Physics Letters, 2003, 82(23): 4190-4192.
[10] WANG X, XU X. Thermoplastic wave in metal induced by ultrafast laser pulses. Journal of Thermal Stresses, 2002, 25(5):457-473.
[11] PEREZ D, LEWIS L J. Ablation of solids under femtosecond laser pulses. Physical Review Letters, 2002, 89(25):255504.
[12] PEREZ D, LEWIS L J. Molecular-dynamics study of ablation of solids under femtosecond laser pulses. Physical Review, 2003, B67(18):184102.
[13] MARTYNYUK M M. Vaporization and boiling of liquid metal in an exploding wire. Soviet Physics Technical Physics, 1974, 19(6): 793-797.
[14] CHEN J K, BERAUN J E. Modelling of ultrashort laser ablation of gold films in vacuum . Journal of Optics, 2003,A5(3): 168-173.
[15] YOO J H, JEONG S H, MAO X L, et al. Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon . Applied Physics Letters, 2000, 76(6): 783-785.
[16] ZHANG N, ZHU X, YANG J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum . Physical Review Letters, 2007, 99(16): 167602.
[17] ZHOU Y, WU B, TAO S, et al. Physical mechanism of silicon ablation with long nanosecond laser pulses at 1064nm through time-resolved observation. Applied Surface Science, 2011, 257(7): 2886-2890.
[18] SALL B, GOBERT O, MEYBADIER P, et al. Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion. Applied Physics, 1999, A69(1): S381-S383.
[19] WANG K P, ZHANG Q H. The ablation microstructures of mono crystalline silicon by high power nanosecond laser.Laser Journal, 2012, 33(5): 36-37(in Chinese).
[20] ADEN M, KREUTZ E W, SCHLVTER H, et al . The applicability of the Sedov-Taylor scaling during material removal of metals and oxide layers with pulsed and excimer laser radiation . Journal of Physics, 1997, D30(6): 980-989.