Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 45 Issue 1
Jan.  2021
Article Contents
Turn off MathJax

Citation:

The effects of laser micromachining on surface morphology and wettability of Ti6Al4V

  • Corresponding author: WANG Guan, wangguan@gdut.edu.cn
  • Received Date: 2020-01-13
    Accepted Date: 2020-03-18
  • In order to process different microstructures on the Ti6Al4V surface and change its wettability to make the surface superhydrophobic, the nanosecond fiber pulsed laser was used to micro-fabricate the Ti6Al4V surface. The effects of the pulse energy density and the scanning interval on the lattice surface morphology and wettability of 3-D microarrays, linear arrays, and surface microstructures were investigated. The results show that the pulse energy and scanning interval affected the surface morphology parameters Sa, Sd, among which, the Sa and Sd of the rid structure were affected the most, followed by the linear array structure, while the lattice structure affected the smallest. After Ti6Al4V was processed by laser, spontaneous transition from superhydrophilic to hydrophobic or even superhydrophobic will occur on the surface. Microstructures processed with different pulse energies and scanning intervals had different degrees of surface wettability improvement, among which the grid structure had the best improvement on the surface wettability, followed by the linear array, and the worst was the lattice; The maximum and minimum contact angles of the grid, linear array, and lattice structure are 165 °, 160.5 °, 142.4 °; 132.9 °, 97 °, 94.6 °, and the surface parameters Sa and Sd with the maximum contact angle are 0.97μm, 1.38; 1.62μm, 1.04; 4.14μm, 2.39, respectively. This research has certain reference significance for improving the surface wettability of Ti6Al4V.
  • 加载中
  • [1]

    BAI R G. Application and prospect of vanadium & titanium new material[J]. Hebei Metallurgy, 2019(3): 1-8(in Chinese).
    [2]

    CAI J M, LI Zh, TIAN F, et al. Manufacture of high-performance titanium alloy dual-performance integral impeller for advanced aero engines[J]. Aeronautical Manufacturing Technology, 2019, 62(19):34-40(in Chinese).
    [3]

    ZHANG H. Titanium is significant in oceaneering projects[J]. China Titanium Industry, 2015(4): 46-47(in Chinese).
    [4]

    BAI P F, SONG Sh L, ZOU Zh Y, et al. Corrosion and protection of metals in the marine environment[J]. Shanxi Chemical Industry, 2015, 35(5): 28-29(in Chinese).
    [5]

    WANG Q, CHEN G X. Construction and application of bionic superhydrophobic materials[J]. Imaging Science and Photochemistry, 2019, 37(3): 255(in Chinese).
    [6]

    LI Sh, QIAN Ch L, LI D, et al. Frost evolution behavior and drainage characteristics of superhydrophobic surface[J]. Journal of Refrigeration, 2020(1): 1-8(in Chinese).
    [7]

    YE X, WANG Z, ZHOU M, et al. Research of surface micro-structure and anti-coagulant property of pyrolytic carbon induced by laser[J]. Laser Technology, 2013, 37(5): 696-699(in Chinese).
    [8]

    KHALIFEH S, BURLEIGH T D. Super-hydrophobic stearic acid layer formed on anodized high purified magnesium for improving corrosion resistance of bioabsorbable implants[J]. Journal of Magnesium and Alloys, 2018, 6(4):327-336.
    [9]

    OLIVO J, CUEVAS M. Enhanced energy transfer via graphene-coated wire surface plasmons[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239: 106655.
    [10]

    LIU Y J, LIU N, JING Y N, et al. Surface design of durable and recyclable superhydrophobic materials for oil/water separation[J]. Colloids and Surfaces, 2019, A567:128-138.
    [11]

    LI J K. Study on fabricating technology for film microstructure based on ultraviolet nanosecond laser pulse[D]. Tianjin: Tianjin University, 2018: 32-57(in Chinese).
    [12]

    ZHANG Ch, WANG G, YANG Zh G, et al. Optimization of technology parameters for fracture splitting grooves of connecting rods fabricated by pulse fiber laser[J]. Laser Technology, 2018, 42(3): 422-426(in Chinese).
    [13]

    DING Ch M. Application of laser processing technology in construction machinery manufacturing[J]. New Technology & New Products of China, 2019(21): 66-67(in Chinese).
    [14]

    GU J, YE X, FAN Zh M, et al. Progress in fabrication of biomimetic superhydrophobic surfaces by laser etching[J]. Laser Technology, 2019, 43(4): 57-63(in Chinese).
    [15]

    KRYACHKO Y. Novel approaches to microbial enhancement of oil recovery[J]. Journal of Biotechnology, 2018, 6:118-123.
    [16]

    CHEN T, HU Ch Ch, FANG Y, et al. A novel method of measuring the contact angle of droplets[J]. Laser & Optoelectronics Progress, 2017, 54(8): 82402(in Chinese).
    [17]

    ZHU Y. Effect of surface micro-features on droplet wetting state and gas-liquid interface stability[D]. Beijing: Tsinghua University, 2017: 17-29(in Chinese).
    [18]

    LI J Y, LU Sh X, XU W G, et al. Fabrication of stable 000000Ni-AlNi-AlO superhydrophobic surface on aluminum substrate for self-cleaning, anti-corrosive and catalytic performan[J]. Journal of Materials Science, 2018, 53(2): 1097-1109.
    [19]

    GENG W Y, HU A M, LI M. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array[J]. Applied Surface Science, 2012, 263(9): 821-824.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8) / Tables(3)

Article views(6721) PDF downloads(25) Cited by()

Proportional views

The effects of laser micromachining on surface morphology and wettability of Ti6Al4V

    Corresponding author: WANG Guan, wangguan@gdut.edu.cn
  • 1. School of Electromechanical and Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2. Guangdong Sihui Shili Connecting Rod Co. Ltd., Sihui 526200, China

Abstract: In order to process different microstructures on the Ti6Al4V surface and change its wettability to make the surface superhydrophobic, the nanosecond fiber pulsed laser was used to micro-fabricate the Ti6Al4V surface. The effects of the pulse energy density and the scanning interval on the lattice surface morphology and wettability of 3-D microarrays, linear arrays, and surface microstructures were investigated. The results show that the pulse energy and scanning interval affected the surface morphology parameters Sa, Sd, among which, the Sa and Sd of the rid structure were affected the most, followed by the linear array structure, while the lattice structure affected the smallest. After Ti6Al4V was processed by laser, spontaneous transition from superhydrophilic to hydrophobic or even superhydrophobic will occur on the surface. Microstructures processed with different pulse energies and scanning intervals had different degrees of surface wettability improvement, among which the grid structure had the best improvement on the surface wettability, followed by the linear array, and the worst was the lattice; The maximum and minimum contact angles of the grid, linear array, and lattice structure are 165 °, 160.5 °, 142.4 °; 132.9 °, 97 °, 94.6 °, and the surface parameters Sa and Sd with the maximum contact angle are 0.97μm, 1.38; 1.62μm, 1.04; 4.14μm, 2.39, respectively. This research has certain reference significance for improving the surface wettability of Ti6Al4V.

引言
  • 钛合金因质量轻、强度高等优异的性能,已被广泛应用于航空航天[1-2]。此外,由于钛合金具有优异的抗海洋环境腐蚀能力,因此, 它也是海洋油气、海港建筑、海洋船舶等海洋工程的首选材料[3]。由于海洋环境非常恶劣,随着时间的推移,海洋设施不可避免地会受到海洋环境的危害[4]。仿生学研究表明,疏水性表面可以有效地避免污染物的附着,有效地减缓或防止海洋环境对材料的损害[5]。如果能使材料表面具有疏水性,则可以使材料具备自清洁能力,这有望从根本上解决海洋环境对材料的侵害[6]

    润湿性是固体材料的重要特征之一。表面润湿性主要受表面化学组成及表面微观形貌的影响,前者主要决定材料的表面能,而后者主要影响材料的表面形貌,因此可以从这两方面着手来制备具有疏水或超疏水性的表面[7-8]。由于材料表面能越低其疏水性越好,通常是在材料表面涂覆低表面能物质,来降低表面能提高疏水性,但这种方法获得的疏水性表面不是很好且成本高[9-10], 所以最常用的是在材料表面加工微结构,以改变材料表面形貌,达到改善其表面润湿性的目的[11]。激光微加工具有速度快、精度高、稳定性好、无环境污染等诸多独特的优势[12-13],仅需改变激光加工参量即可在材料表面加工不同形貌的微结构,其已成为其它加工方式的有效替代方案[14]

    以Ti6A14V为研究对象,通过激光加工产生微结构来改变其表面形貌,以改善其表面润湿性,提高其抵抗海洋环境破坏的能力。

1.   表面润湿性基本理论
  • 润湿性是指一种液体在一种固体表面铺展的能力[15]。接触角是材料表面润湿性的基本特征参量[16]。当液体停留在固体表面时,会在固体表面呈球体或半球体铺开,如图 1所示。在固-液-气相交点处,气-液界面的切线与固-液界面的切线的夹角被表征为接触角。在一个理想的水平光滑表面上,固体表面的接触角由杨氏经典方程给出:

    Figure 1.  Schematic diagram of contact angle

    式中, γSV, γSLγLV分别为固-气、固-液及液-气之间的界面张力[17]

    一般认为,接触角θ在90°~150°之间的表面为疏水表面;接触角大于150°的表面为超疏水表面;接触角小于5°的表面为超亲水表面[18]

2.   实验条件与方法
  • 实验设备采用中山汉通激光设备有限公司的HT-20F型脉冲光纤激光加工装备,其主要参量见表 1

    process parameter value
    laser medium Yb-fiber
    laser beam mode TEM00
    focal spot diameter d 35μm
    laser radiation wavelength λ 1064nm
    laser nominal average power Pave 1W~20W
    pulse duration time τ 4ns~200ns
    pulse repetition frequency f 0kHz~1000kHz
    beam scanning speed v 0mm/s~2000mm/s

    Table 1.  Main parameters of laser equipment

    由于激光器的脉冲能量与脉宽、频率及平均功率百分比有关。实验中为了方便调节脉冲能量且保持其它条件不变,故保持脉宽τ=100ns,脉冲频率f=10kHz,通过改变平均功率百分比η来调节脉冲能量。通过激光功率仪对所选参量的平均功率Pave进行了测量,并通过(2)式对激光功率密度Φ进行了计算,其结果见表 2

    η/% 10 20 30 40 50 60 70 80 90 100
    Pave/W 0.626 0.8 1.24 1.67 2.08 2.54 2.99 3.45 3.91 4.33
    Φ/(mJ·mm-2) 69 88.2 136.7 184 229.2 279.9 329.5 380.2 430.9 477.2

    Table 2.  Energy density at different average power percentages

    图 2所示,先对Ti6Al4V基板进行单点加工预实验,并对单点烧蚀坑形貌进行观测及测量,然后根据其直径D,选取不同的扫描间距W,在Ti6Al4V基板上加工点阵、线阵及网格3种微结构,扫描速率v=100mm/s。

    Figure 2.  Schematic of laser processing

    实验材料为宝鸡钛业股份有限公司生产的Ti6Al4V钛合金,其化学成分列于表 3中。

    element Al V Fe C N H O other Ti
    mass fraction 0.056~0.065 0.035~0.045 0.003 0.0008 0.0005 0.00015 0.002 0.001 balance

    Table 3.  Ti6Al4V element content

    由于轧制工艺制成的钛合金板表面粗糙度差异较大,Ti6Al4V基板在进行激光微加工前,采用3000目砂纸对其表面进行了抛光处理,以避免原表面差异性对实验结果的影响。

3.   结果与讨论
  • 使用激光共聚焦电子显微镜(OLYMPUS OLS4000)对激光加工后基板表面的单个烧蚀坑形貌进行了观测,并对烧蚀坑的直径D及深度H进行了测量。如图 3所示,烧蚀坑中央部位为表面材料发生熔化、汽化、熔化物对流及重新凝固后形成的凹坑,边缘为熔化物重新凝固形成的凸起,凹坑呈中部深边缘浅的“碗状”且其表面较光滑,这是由于激光束的光斑模式为TEM00,其能量大致呈高斯分布,光斑的能量密度从中心到边缘逐渐减弱,从而会在基板上烧蚀出中央深边缘浅的凹坑。

    Figure 3.  3-D morphology and cross-section profile of ablation pits at η=10%

    图 4所示,在脉冲能量较小时,烧蚀坑的直径D和深度H随着脉冲能量的增加而大致呈线性增加,因为较高的脉冲能量会产生更大的熔池,从而使DH增大。当脉冲能量增加到一定值时,DH的增加速度就会逐渐减慢,特别是在脉冲能量相对较高时,DH的大小会逐渐呈现饱和趋势。

    Figure 4.  Relationship between diameter and depth of ablation pits and energy density

    为了更方便地描述扫描间距,现引入重叠率δ这一新参量,其具体表达见下式:

    后续分别选取δ为30%, 0%, -30%, -60%,η为10%, 30%, 60%, 100%,在基板上加工点阵、线阵及网格3种不同类型的微结构,以研究脉冲能量、扫描间距和微结构类型对表面形貌及润湿性的影响。

  • 图 5为激光共聚焦电子显微镜(OLYMPUS OLS4000)测量的激光加工后基板表面的3维形貌。当δ为-30%和-60%时,从图 5a图 5b图 5e图 5f图 5i图 5j可知,点阵、线阵及网格结构的表面均存在未被激光烧蚀的区域,且未被烧蚀区域的面积随着δ的增大将有所减小;当δ=0%时,从图 5c图 5g图 5k可看出,线阵及网格结构的表面均被激光完全烧蚀,但点阵加工依然存在少量区域未被激光烧蚀;当δ=30%时,从图 5d图 5h图 5l可看出,点阵、线阵及网格结构的表面均被激光全完烧蚀,且有部分区域被激光重复烧蚀多次。

    Figure 5.  3-D morphology of the substrate surface after laser processing

    为了进一步对激光加工后的表面形貌进行分析,采用激光共聚焦电子显微镜在加工表面随机选取5个位置,根据ISO 25178-2标准,对其表面算术平均高度Sa及表面积增加比Sd进行了计算。

    图 6中绘制出了SaSdδη的关系。由图 6a可知,对于点阵结构,η=10%时,Saδ的增加而增大,在δ=30%时Sa有极大值;η=30%, 60%或100%时,Saδ的增加而先增大后减小,均在δ=0%时有极大值,因此在δ=0%, η=100%时Sa有最大值1.18μm。由图 6b可知,对于点阵结构,无论η取何值,Sd均随δ的增加而增大,因此在δ=30%, η=100%时, Sd有最大值1.487。由图 6c6e可知,对于线阵或网格结构,无论η取何值,Sa均随δ的增加而增大,且在δ相同时,Sa随η的增加而增大,因此在δ=30%, η=100%时, Sa有最大值,分别为3.14μm, 4.25μm。由图 6d图 6f可知,对于线阵或网格结构,η=10%时,Sdδ的增加而增大,在δ=30%时有最大值,分别为1.08, 1.96;η为30%, 60%或100%时,Sdδ的增加而先增大后减小,均在δ=0%时有极大值,因此在δ=0%, η=100%时, Sa有最大值,分别为1.61, 2.39。因此,脉冲能量和扫描间距对点阵、线阵及网格结构的表面形貌参量SaSd均有所影响,且网格结构对表面形貌参量SaSd的影响程度最大,线阵结构次之,点阵结构最小。

    Figure 6.  Relationship of Sa, Sd, δ and η

  • 有研究表明,通过沉积方法在镍表面制备锥型阵列(micronano cone array, MCA)微纳结构后,MCA的表面结构在改善表面润湿性方面起着重要作用,刚制备的表面表现出超亲水性,当表面在室温下暴露于空气中时,随着时间的推移, 该表面会发生从超亲水性到超疏水性的自发转变[19]

    为了探究激光在Ti6Al4V表面加工微结构后是否会有相似的现象发生,使用接触角分析仪(NBSI OSA200)在25℃下,对经激光处理的Ti6Al4V基板表面进行了接触角测量,使用液体为蒸馏水,测试液滴的体积为3μL,每个试样重复测量3次。未进行激光加工的基板表面接触角约为87°,在加工后24h内,水滴到表面后会瞬速摊开,表面皆表现为超亲水性。

    图 7a~图 7c分别为点阵、线阵及网格加工15d后,接触角随δη的变化关系。由图 7a可知,点阵加工中,在δ=-30%, η=60%时,基板表面有最小接触角94.6°,在δ=0%, η=30%时,基板表面有最大接触角142.4°。由图 7b可知,线阵加工中,在δ=30%, η=100%时,基板表面有最小接触角97°,在δ=-60%, η=30%时,基板表面有最大接触角160.5°。由图 7c可知,网格加工中,在δ=-30%, η=60%时,基板表面有最小接触角132.9°,在δ=0%, η=100%时,基板表面有最大接触角165°。因此,激光加工Ti6Al4V后,其表面皆会发生从超亲水到疏水甚至超疏水的自发转变,脉冲能量、扫描间距及微结构类型均对表面润湿性有不同程度的改善,其中网格结构对表面湿润性的改善最好,线阵次之,点阵最差。

    Figure 7.  Relationship between contact angle and δ and η

    图 8a~图 8c中分别为激光加工15d后,点阵、线阵及网格的最大接触角。

    Figure 8.  Surface contact angle

4.   结论
  • 通过纳秒光纤脉冲激光对Ti6Al4V表面进行微加工,研究了脉冲能量和扫面间距对点阵、线阵及3种微结构的表面形貌及润湿性的影响,并建立了接触角与表面特征参量SaSd的关系,研究表明, 激光对Ti6Al4V表面润湿性具有很好的改善作用。

    (1) 在脉冲能量较低时,单个烧蚀坑的直径和深度随着脉冲能量的增加而大致呈线性增加,在脉冲能量相对较高时,单个烧蚀坑的直径和深度的增加会逐渐呈现饱和趋势。

    (2) 脉冲能量和扫描间距对点阵、线阵及网格结构的表面形貌参量SaSd均有所影响,且对网格结构的影响程度最大,线阵结构次之,点阵结构最小。

    (3) 激光加工Ti6Al4V后,其表面皆会发生从超亲水到疏水甚至超疏水的自发转变,不同的脉冲能量、扫描间距加工的微结构均对表面润湿性有不同程度的改善,其中网格结构对表面湿润性的改善最好,线阵次之,点阵最差。

    (4) 网格、线阵、点阵结构的最大及最小接触角分别为165°, 160.5°, 142.4°;132.9°, 97°, 94.6°,其具有最大接触角的表面参量Sa, Sd分别为0.97μm, 1.38;1.62μm, 1.04;4.14μm, 2.39。

    需指出的是, 本文中并未对激光参量、扫面间距及微结构类型进行进一步优化,在后续研究中可以采用正交实验或响应曲面等方法对其进行优化,以获得具有更大接触角的超疏水表面结构。

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return