Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 40 Issue 3
Mar.  2016
Article Contents
Turn off MathJax

Citation:

Design and implement of a synchronous phase measurement system for dual-channel signals

  • Corresponding author: YAN Shuhua, yanshuhua996@163.com
  • Received Date: 2015-04-23
    Accepted Date: 2015-05-13
  • In order to realize precise synchronization detection of signal phase for 2-D heterodyne interference displacement measurement, based on the combination of the whole cycle counting and the pulse stuffing methods, a dual-channel synchronous heterodyne signal phase measurement system based on field programmable gate array was designed and implemented by utilizing the same clock reference to detect synchronously and process the dual-channel signals parallelly. The results demonstrate that the resolution of 0.18 is realized with carrier frequency of 100kHz, and the phase synchronization measurement error of 0.18 is achieved for dual-channel signal detection. Accurate measurement of integral and fractional phases was realized by the system. Meanwhile, the real-time synchronous measurement of dual-channel signal phase was then guaranteed. It indicates that the developed system can fulfill the requirement of various 2-D heterodyne interference displacement measurement applications.
  • 加载中
  • [1]

    ZHANG E Z, HAO Q, CHEN B Y, et al. Laser heterodyne interferometer for simultaneous measuring displacement and angle based on the Faraday effect[J]. Optics Express, 2014, 22(21):25587-25598.
    [2]

    WU C C, HSU C C, LEE J Y, et al. Heterodyne common-path grating interferometer with Littrow configuration[J]. Optics Express, 2013, 21(11):13322-13332.
    [3]

    CHEN B Y, YAN L P, YANG T, et al. Development of a laser synthetic wavelength interferometer for large displacement measurement with nanometer accuracy[J]. Optics Express, 2010, 18(3):3000-3010.
    [4]

    JIAN P, PINEL O, FABRE C, et al. Real-time displacement measurement immune from atmospheric parameters using optical frequency combs[J]. Optics Express, 2012, 20(24):27133-27146.
    [5]

    HORESTANI A K, NAQUI J, SHATERIAN Z, et al. Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators[J]. Sensors and Actuators, 2014, A210(1):18-24.
    [6]

    HSIEH H L, PAN S W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry[J]. Applied Optics,2013, 52(27):6840-6848.
    [7]

    HSIEH H L, CHEN J C, LERONDEL D. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer[J]. Optics Express, 2011, 19(10):9770-9782.
    [8]

    HSU C C, WU C C, LEE J Y, et al. Reflection type heterodyne grating interferometry for in-plane displacement measurement[J]. Optics Communications, 2008, 281(1):2582-2589.
    [9]

    LI S D, ZHANG X L, TAO H, et al. Hardware design and realization of 3D grating displacement measurement system[J]. Transducer and Microsystem Technologies, 2013, 32(5):124-127 (in Chinese).
    [10]

    LIN C B, YAN S H, DU Zh G, et al. High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications, 2015, 339(15):86-93.
    [11]

    SHI Y, JU A S, LE Y F. Heterodyne interference signal processing method based on FPGA[J]. Laser Technology, 2012, 36(2):225-227 (in Chinese).
    [12]

    QIU X Q, LE Y F, WANG J. Interpolation of heterodyne interferometric signals based on FPGA[J]. Laser Technology, 2011, 35(2):199-205 (in Chinese).
    [13]

    LE Y F, LI X X, JU A S. Design of phase comparator in a laser heterodyne interferometer[J]. Laser Technology, 2014, 38(1):119-123 (in Chinese).
    [14]

    YANG D X, YAN S H, DU L B, et al. Design of a miniature single-grating displacement measuring system with nanometer resolution[J]. Infrared and Laser Engineering, 2013, 42(4):1020-1025 (in Chinese).
    [15]

    WANG H, ZHOU W, LI Z Q. Frequency measurement method based on delay chain[J]. Chinese Journal of Scientific Instrument, 2008, 29(3):320-323 (in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(9051) PDF downloads(163) Cited by()

Proportional views

Design and implement of a synchronous phase measurement system for dual-channel signals

    Corresponding author: YAN Shuhua, yanshuhua996@163.com
  • 1. Department of Instrument Science and Technology, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China

Abstract: In order to realize precise synchronization detection of signal phase for 2-D heterodyne interference displacement measurement, based on the combination of the whole cycle counting and the pulse stuffing methods, a dual-channel synchronous heterodyne signal phase measurement system based on field programmable gate array was designed and implemented by utilizing the same clock reference to detect synchronously and process the dual-channel signals parallelly. The results demonstrate that the resolution of 0.18 is realized with carrier frequency of 100kHz, and the phase synchronization measurement error of 0.18 is achieved for dual-channel signal detection. Accurate measurement of integral and fractional phases was realized by the system. Meanwhile, the real-time synchronous measurement of dual-channel signal phase was then guaranteed. It indicates that the developed system can fulfill the requirement of various 2-D heterodyne interference displacement measurement applications.

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return