高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空环境下低损耗高反射光学元件性能退化特性

许彬 李斌成 高椿明 王强 郭小红 孙启明

引用本文:
Citation:

真空环境下低损耗高反射光学元件性能退化特性

    作者简介: 许彬(19994-),男,硕士研究生,现主要从事真空环境对光学薄膜性能影响的研究.
    通讯作者: 李斌成, bcli@uestc.edu.cn
  • 基金项目:

    国家自然科学基金委员会与中国工程物理研究院联合基金资助项目 U1830132

  • 中图分类号: O484.4+1

Performance degradation of low-loss highly-reflective mirrors under vacuum environment

    Corresponding author: LI Bincheng, bcli@uestc.edu.cn ;
  • CLC number: O484.4+1

  • 摘要: 为了研究真空环境对光学薄膜的影响,将离子辅助沉积制备的1064nm强光反射膜样品放置于真空度优于1×10-5Pa的不锈钢真空室,实验观测其反射率和吸收损耗随放置时间的变化。结果表明,样品在真空环境放置335h后,其反射率从99.9823%下降到了99.9543%,吸收损耗从6.8×10-6上升到了59.5×10-6, 用酒精乙醚混和液擦拭后其光学性能完全恢复, 样品表面的污染层厚度随时间增加; 操作过程中的人为因素是导致强光反射膜元件光学性能持续下降的主要原因。这一结果对高能/高功率激光光学元件在真空应用环境中稳定性的提高是有帮助的。
  • Figure 1.  Vacuum device

    Figure 2.  Diagram of absorptance measurement based on laser calorimetry

    Figure 3.  Diagram of reflectance measurement based on CRD

    Figure 4.  Dependences of optical properties of the HR sample on storage time in vacuum

    Figure 5.  Surface topography of the HR sample

    Figure 6.  Laser calorimetric absorptance measurement

    Figure 7.  CRD reflectance measurement result

  • [1]

    BROWN A, OGLOZA A, TAYLOR L, et al. Continuous-wave laser damage and conditioning of particle contaminated optics[J]. Applied Optics, 2015, 54(16): 5216-5222. doi: 10.1364/AO.54.005216
    [2]

    MATTHEWS M J, SHEN N, HONIG J, et al. Phase modulation and morphological evolution associated with surface-bound particle ablation[J]. Journal of the Optical Society of America, 2013, B30(12): 3233-3242.
    [3]

    DEMOS S G, CARR C W, CROSS D A. Mechanisms of surface contamination in fused silica by means of laser-induced electrostatic effects[J]. Optics Letters, 2017, 42(13): 2643-2646. doi: 10.1364/OL.42.002643
    [4]

    ASHE B, MARSHALL K L, GIACOFEI C, et al. Evaluation of cleaning methods for multilayer diffraction gratings[J]. Proceedings of the SPIE, 2006, 6403: 64030O. doi: 10.1117/12.694884
    [5]

    ASHE B, GIACOFEI C, MYHRE G, et al. Optimizing a cleaning process for multilayer-dielectric-(MLD) diffraction grating[J]. Proceedings of the SPIE, 2008, 6720: 67200N.
    [6]

    PHELPS M H, GUSHWA K E, TORRIE C I. Optical contamination control in the advanced LIGO ultra-high vacuum system[J]. Proceedings of the SPIE, 2013, 8885: 88852E. doi: 10.1117/12.2047327
    [7]

    KARELL B A, PEREIRA A, BELIN C, et al. Impact of outgassing organic contamination on laser induced damage of optics[J]. Proceedings of the SPIE, 2009, 7504: 75040V. doi: 10.1117/12.836384
    [8]

    MANGOTE B, TOVENA-PECAULT I, NAUPORT J. Study of the LIDT degradation of optical components by intentional organic contamination[J]. Proceedings of the SPIE, 2012, 8530:853025. doi: 10.1117/12.968573
    [9]

    MIAO X X, YUAN X D, WANG H J, et al. Experiment of laser induced damage threshold for fused silica initiated at thin film contamination of Cu on surface[J]. High Power Laser and Particle Beams, 2008, 20(9): 1483-1486(in Chinese).
    [10]

    MIAO X X, YUAN X D, WANG H J, et al. Experiment of laser induced damage for different thin film contamination of Cu and Fe on fused silica surface[J]. Optical & Optoelectronic Technology, 2009, 7(2): 90-93(in Chinese).
    [11]

    PALMER J R. Continuous wave laser damage on optical components[J]. Optical Engineering, 1983, 22(4): 18-19.
    [12]

    SHAH R S, REY J J, STEWART A F. Limits of performance: CW laser damage[J]. Proceedings of the SPIE, 2007, 6403: 640305.
    [13]

    STUART B C, HERMAN S M, PERRY M D. Laser-induced da-mage in dielectrics with nanosecond to subpicosecond pulses I: experimental[J]. Physical Review Letters, 1994, 74(12): 2248-2251.
    [14]

    STUART B C, FEIT M D, HERMAN S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review, 1996, B53(4): 1749-1761.
    [15]

    RIEDE W, ALLENSPACHER P, HELMUT S, et al. Laser-induced hydrocarbon contamination in vacuum[J]. Proceedings of the SPIE, 2005, 5991: 59910H.
    [16]

    MIAO X X, YUAN X D, LV H B, et al. Contamination in beampath and laser induced damage of optics in high power laser system[J]. High Power Laser and Particle Beam, 2015, 27(3): 256-261(in Chinese).
    [17]

    YANG L, XIANG X, MIAO X, et al. Influence of outgassing orga-nic contamination on the transmittance and laser-induced damage of SiO2 sol-gel antireflection film[J]. Optical Engineering, 2015, 54(12): 126101. doi: 10.1117/1.OE.54.12.126101
    [18]

    WU P, FAN Y R, GUO J W, et al. High reflectivity aluminum film processed by nanosecond pulse laser[J]. Laser Technology, 2019, 43(6): 779-783(in Chinese).
    [19]

    INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 11551 2003(E) test method for absorptance of optical laser components[S]. Geneva, Switzerland: International Organization for Standardization, 2003: 17-19.
    [20]

    LI B Ch, GONG Y. Review of cavity ring-down techniques for high reflectivity measurements[J]. Laser & Optoelectronics Progerss, 2010, 47(2): 31-41(in Chinese).
    [21]

    JIAO Z L, YANG D Sh, PANG H W. Experimental study on the optical effect of molecular contamination[J]. Spacecraft Environment Engineering, 2009, 26(1): 17-20(in Chinese).
  • [1] 易亨瑜彭勇田小强胡晓阳吕百达 . 光腔衰荡法的单波长反射率测量实验研究. 激光技术, 2005, 29(4): 337-339.
    [2] 易亨瑜吕百达张凯 . 衰荡光腔中腔镜倾斜分析. 激光技术, 2006, 30(1): 5-8.
    [3] 易亨瑜吕百达彭勇刘盛林 . 探测器孔径大小对衰荡腔测量精度的影响. 激光技术, 2004, 28(3): 231-233,236.
    [4] 卢静罗斌 . 垂直腔半导体光放大器中的等效反射率分析. 激光技术, 2019, 43(2): 174-178. doi: 10.7510/jgjs.issn.1001-3806.2019.02.005
    [5] 常艳贺金春水李春邓文渊靳京城 . ArF准分子激光对氟化物高反射薄膜的诱导损伤. 激光技术, 2014, 38(3): 302-306. doi: 10.7510/jgjs.issn.1001-3806.2014.03.004
    [6] 易亨瑜吕百达 . 反射率测量技术研究的进展. 激光技术, 2004, 28(5): 459-462.
    [7] 李大义周小红李义峰陈建国罗斌韩松 . 分析半导体激光器端面单层减反射膜的有效性. 激光技术, 1998, 22(4): 246-250.
    [8] 谭中奇龙兴武 . 腔长变化对连续波腔衰荡技术测量的影响. 激光技术, 2007, 31(4): 438-441.
    [9] 王成马莹张贵彦肖孟超甘志宏缪同群钱龙生 . 薄膜应力激光测量方法分析. 激光技术, 2005, 29(1): 98-100.
    [10] 何长涛马孜陈建国赵汝进 . 基于小波变换的薄膜激光损伤识别. 激光技术, 2007, 31(2): 131-133,136.
    [11] 常艳贺金春水邓文渊李春 . 193nm薄膜激光诱导损伤研究. 激光技术, 2011, 35(3): 308-311. doi: 10.3969/j.issn.1001-3806.2011.03.006
    [12] 张娜周炳卿张林睿路晓翠 . a-SiNx:H薄膜的热丝化学气相沉积及微结构研究. 激光技术, 2016, 40(3): 413-416. doi: 10.7510/jgjs.issn.1001-3806.2016.03.024
    [13] 邱服民王刚戴红玲蒲云体 . HfO2/SiO2高反射薄膜的应力控制技术研究. 激光技术, 2015, 39(6): 785-788. doi: 10.7510/jgjs.issn.1001-3806.2015.06.011
    [14] 唐帆斌肖峻马孜 . TiO2薄膜的宽光谱特性椭偏法研究. 激光技术, 2015, 39(6): 776-779. doi: 10.7510/jgjs.issn.1001-3806.2015.06.009
    [15] 陈传忠姚书山包全合张亮雷廷权 . 脉冲激光沉积羟基磷灰石薄膜的研究现状. 激光技术, 2004, 28(1): 74-77.
    [16] 李玉瑶张婉怡刘喆李美萱付秀华S-on-1测量方式下薄膜激光损伤的累积效应. 激光技术, 2018, 42(1): 39-42. doi: 10.7510/jgjs.issn.1001-3806.2018.01.008
    [17] 张大伟贺洪波邵建达范正修 . 离子束辅助沉积制备高功率激光薄膜的研究. 激光技术, 2008, 32(1): 57-60.
    [18] 周维军袁永华桂元珍 . 激光辐照TiO2/SiO2薄膜损伤时间简捷测量. 激光技术, 2007, 31(4): 381-383.
    [19] 崔文东张鹏翔刘翔张国勇谈松林戴永年 . 巨磁阻薄膜激光感生电压的温度稳定性研究. 激光技术, 2007, 31(6): 636-638.
    [20] 陈俊领段国平黄明举 . 激光能量对沉积纳米Si薄膜晶粒尺寸的影响. 激光技术, 2012, 36(3): 322-325.
  • 加载中