高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群优化算法的级联喇曼光纤放大器

巩稼民 徐雨田 何佳蔓 田宁 张玉蓉 尤小磊 毛俊杰

引用本文:
Citation:

基于粒子群优化算法的级联喇曼光纤放大器

    作者简介: 巩稼民(1962-),男,博士,教授,现主要从事光纤通信与非线性光纤光学的研究。E-mail:gjm@xupt.edu.cn.
  • 基金项目:

    国家自然科学基金资助项目 61775180

  • 中图分类号: TN722

Cascaded Raman fiber amplifier based on particle swarm optimization

  • CLC number: TN722

  • 摘要: 为了在较高的净增益条件下实现最小化喇曼增益平坦度,采用粒子群优化算法对As-S光纤与碲基光纤级联的光纤放大器各抽运光参量优化配置的方法,进行了理论分析和实验验证。结果表明,应用上述方法对得到的3组优化结果进行对比,在带宽为40nm的级联喇曼光纤放大器上,达到了平均增益为53.25dB、增益平坦度为0.30dB的较高性能。与传统光纤放大器和现有的级联光纤放大器相比,使用粒子群优化算法对各抽运光的功率和波长优化后,会使级联光纤放大器性能明显提高,这在未来的光纤通信中具有一定实用价值。
  • Figure 1.  Flow chart of particle swarm optimization algorithm

    Figure 2.  Structure diagram of As-S fiber and tellurium based fiber cascade amplifier

    Figure 3.  Gain spectrum of Raman fiber

    a—raman gain spectrum of As-S fiber b—raman gain spectrum of tellurium based fiber

    Figure 4.  Signal optical power varies with transmission distance

    Figure 5.  Signal optical output gain flatness

    Figure 6.  Cascade RFA output gain diagram

    Table 1.  Basic parameter setting

    parameter name values
    number of iterations T 1000
    total number of particles M 50
    dimension of each particle D 10
    inertia weight w 0.8
    learning factor c1, c2 1, 1
    number of pumps n 5
    effective sectional area of Ae, 1, Ae, 2 26.7μm, 55μm
    wavelength upper limit λmax 1410nm
    lower wavelength limit λmin 1490nm
    upper limit of power Pmax 3.5W
    lower power limit Pmin 2W
    signal optical power P 0.01mW
    下载: 导出CSV

    Table 2.  The optimization results

    parameter name values
    1 2 3
    P11/W 2.7901 2.5200 2.8001
    P12/W 2.6500 2.4201 2.7500
    P21/W 3.2205 2.5205 3.2310
    P22/W 3.1711 2.6712 3.1691
    P23/W 2.9511 2.9531 2.9601
    λ11/nm 1451.4 1460.8 1486.4
    λ12/nm 1481.9 1459.7 1489.8
    λ21/nm 1454.6 1451.1 1444.2
    λ22/nm 1440.8 1440.7 1449.8
    λ23/nm 1440.8 1440.7 1449.8
    G/dB 49.20 53.25 44.80
    GΔ/dB 0.39 0.30 0.40
    下载: 导出CSV
  • [1]

    YU S H, YANG Q, XUE D J, et al.Research on key technology of 3U optical transmission[J]. Study on Optical Communications, 2014, 40(6): 1-6(in Chinese). 
    [2]

    SINGH K, PATTERH M S, BHAMRAH M S. An effective numerical method for gain profile optimizations of multi pumped fiber Raman amplifiers[J]. Optik—International Journal for Light and Electron Optics, 2014, 125(10):2352-2355. doi: 10.1016/j.ijleo.2013.10.069
    [3]

    ZHANG B, ZHANG E T, HU X Ch, et al.Amplification characteristics of multiwavelength erbium-doped fiber laser amplifiers[J]. Laser Technolocy, 2018, 42(3): 325-330(in Chinese). 
    [4]

    YAN B B, WU K R, YU C X, et al. Broadband gain-flattened multi-wavelength pumped Raman fiber amplifier[J]. Optics and Precision Engineering, 2006, 14(2):155-158(in Chinese). 
    [5]

    ZHOU Y X, XU X C. Design of C+L-band broad gain-flattened bismuth-based erbium-doped fiber amplifier[J]. Infared and Laser Engineering, 2012, 41(8):2119-2124(in Chinese). 
    [6]

    JIANG L, GONG J M, XING R P, et al. Multi-wavelength pumped gain compensated Raman fiber amplifier[J]. Study on Optical Communications, 2017, 43(5): 46-50(in Chinese). 
    [7]

    ZHANG W, PENG J D, LIU X M, et al. Improvement of transmission performances of optical communication systems by distributed fiber Raman amplifiers[J]. Chinese Journal of Lasers, 2002, 29(8):729-734(in Chinese). 
    [8]

    GONG J M, DING Zh, LI S P, et al. Research on broadband raman fiber amplifier based on particle swarm optimization[J]. Study on Optical Communications, 2018, 209(5): 50-55(in Chinese). 
    [9]

    JIANG H M, XIE K, WANG Y F. Design of mult-i pumped Raman fiber amplifier by particle swarm optimization[J]. Journal of Optoelectronics·Laser, 2002, 29(10):56-59(in Chinese). 
    [10]

    OHISHI Y, MORI A, YAMADA M, et al. Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-microm broadband amplification[J]. Optics Letters, 1998, 23(4):274-279. doi: 10.1364/OL.23.000274
    [11]

    XU J H, YUAN X Y, GONG J M. A tellurite-based Raman fiber amplifier[J]. Journal of Xi'an University of Posts and Telecommunications, 2013, 18(5):59-62(in Chinese). 
    [12]

    WU M, LIU H R, HUANG D X. Dispersion property in highly nonlinear photonic crystal fiber[J]. Acta Optica Sinica, 2008, 28(3):539-542(in Chinese). doi: 10.3788/AOS20082803.0539
    [13]

    MATSAINI, BUDI S. Solving the container stowage problem (CSP) using particle swarm optimization (PSO)[J]. IOP Conference Series: Materials Science and Engineering, 2018, 337(1):012002. 
    [14]

    LI Sh W, ZHANG H M, ZHANG X L, et al. Research of data allocation problem based on hybrid binary particle swarm & genetic algorithm[J]. Application of Electronic Technique, 2016, 42(7): 122-125(in Chinese). 
    [15]

    SITOPU J W, MAWENGKANG H, LUBIS R S. An improved search approach for solving non-convex mixed-integer non linear programming problems[J]. IOP Conference Series: Materials Science and Engineering, 2018, 300(1):012022. 
    [16]

    ZHANG G F, JIANG J G, QI M B, et al. Solutions of nonlinear multilevel programming based on particle swarm optimization[J]. Pattern Recognition and Artifical Intelligence, 2007, 20(6): 745-750(in Chinese). 
    [17]

    MENG C, PAN W, LOU B, et al. A method of optimal designing counter-multiwave-pumped broadband fiber Raman amplifiers pump scheme[J]. Laser & Infrared, 2007, 37(4): 329-331(in Chinese). 
    [18]

    ZHOU Y X, CHEN F, XU T F, et al. Study on gain spectrum of broad-band erbium-doped tellurite-based fiber amplifier[J]. Opto-electronic Engineering, 2005, 32(1): 47-50(in Chinese). 
    [19]

    SANGHERA J S, FLOREA C M, SHAW L B, et al. Non-linear properties of chalcogenide glasses and fibers[J]. Journal of Non-Crystalline Solids, 2008, 354(2/9):462-467. 
    [20]

    XUE W W. Study on tellurite-based fiber Raman amplifier[D]. Beijing: Beijing Jiaotong University, 2005: 24-33(in Chinese).
  • [1] 周维军王荣波李泽仁 . 分布式宽带光纤喇曼放大器的研制. 激光技术, 2009, 33(5): 449-451,458. doi: 10.3969/j.issn.1001-3806.2009.05.001
    [2] 周维军王荣波李泽仁 . 分布式光纤喇曼放大器实验研究. 激光技术, 2010, 34(3): 373-376. doi: 10.3969/j.issn.1001-3806.2010.03.025
    [3] 张鹏段云锋黄榜才潘蓉宁鼎 . 全光纤结构高增益脉冲光纤放大器的实验研究. 激光技术, 2009, 33(5): 452-454,469. doi: 10.3969/j.issn.1001-3806.2009.05.002
    [4] 汪相如熊彩东邓浩罗娟研邱琪廖云 . 反折射率增益导引光纤放大器增益特性分析. 激光技术, 2009, 33(5): 535-537,540. doi: 10.3969/j.issn.1001-3806.2009.05.017
    [5] 李晨张海洋赵长明张立伟杨苏辉杨宏志 . 光纤环路移频反馈激光器及放大器增益的研究. 激光技术, 2018, 42(2): 172-175. doi: 10.7510/jgjs.issn.1001-3806.2018.02.006
    [6] 吴晓燕任海兰 . 中间级接入掺铒光纤放大器及其自动增益校准. 激光技术, 2013, 37(4): 529-532. doi: 10.7510/jgjs.issn.1001-3806.2013.04.025
    [7] 车继波杨亚培刘爽官周国薛辉 . Er3+/Yb3+共掺磷酸盐玻璃光纤放大器的增益综述. 激光技术, 2006, 30(1): 82-85.
    [8] 庄茂录赵尚弘董淑福马丽华 . 双包层Er3+/Yb3+共掺光纤放大器粒子数特性分析. 激光技术, 2004, 28(4): 379-382,409.
    [9] 张宇舟金晓峰金向东余显斌郑史烈池灏章献民 . 基于超长分布式2阶喇曼放大器的光载射频传输. 激光技术, 2018, 42(3): 300-305. doi: 10.7510/jgjs.issn.1001-3806.2018.03.003
    [10] 周维军李泽仁王荣波 . 多波长抽运C+L波段喇曼放大器的数值模拟与分析. 激光技术, 2011, 35(6): 778-780,853. doi: 10.3969/j.issn.1001-3806.2011.06.015
    [11] 高健王庆康王丹燕 . 基于粒子群优化算法的透射滤光片设计. 激光技术, 2018, 42(5): 617-621. doi: 10.7510/jgjs.issn.1001-3806.2018.05.007
    [12] 李源柴艳红刘兰波毛喆翟新华 . 激光测量系统不确定度最小包络椭球模型研究. 激光技术, 2022, 46(3): 293-300. doi: 10.7510/jgjs.issn.1001-3806.2022.03.001
    [13] 张博张恩涛胡小川何幸锴沈琪皓陈玥洋张勍李策 . 多波长掺铒光纤激光放大器的放大特性研究. 激光技术, 2018, 42(3): 325-330. doi: 10.7510/jgjs.issn.1001-3806.2018.03.007
    [14] 吴香伟郭宝峰陈春种沈宏海 . 基于加权组合核RX算法异物检测及其参量选择. 激光技术, 2015, 39(6): 745-750. doi: 10.7510/jgjs.issn.1001-3806.2015.06.003
    [15] 李洪黄肇明李英 . Er3+/Yb3+双掺光纤放大器理论模型. 激光技术, 1995, 19(4): 214-221.
    [16] 周雷宁继平陈王争韩群张伟毅王俊涛 . Er/Yb共掺光纤脉冲放大器中的受激布里渊散射. 激光技术, 2009, 33(5): 482-485. doi: 10.3969/j.issn.1001-3806.2009.05.010
    [17] 伍波杨泽后黄彪赵晓军樊冬周鼎富侯天晋 . 低重复频率脉冲掺镱光纤放大器. 激光技术, 2009, 33(5): 532-534. doi: 10.3969/j.issn.1001-3806.2009.05.016
    [18] 陶宁姜海明肖峻 . 基于SNMP的光纤放大器远程监控系统设计. 激光技术, 2011, 35(3): 368-371. doi: 10.3969/j.issn.1001-3806.2011.03.021
    [19] 赵振宇段开椋王建明赵卫王屹山 . 掺Yb3+光纤放大器的自发辐射噪声分析. 激光技术, 2009, 33(6): 611-614,618. doi: 10.3969/j.issn.1001-3806.2009.06.015
    [20] 陶宁姜海明肖峻谢康王亚非李雷 . 光纤放大器抽运模块LD驱动电流源设计. 激光技术, 2010, 34(6): 819-822. doi: 10.3969/j.issn.1001-3806.2010.06.027
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  7807
  • HTML全文浏览量:  5975
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-20
  • 录用日期:  2019-11-29
  • 刊出日期:  2020-11-25

基于粒子群优化算法的级联喇曼光纤放大器

    作者简介: 巩稼民(1962-),男,博士,教授,现主要从事光纤通信与非线性光纤光学的研究。E-mail:gjm@xupt.edu.cn
  • 西安邮电大学 通信与信息工程学院,西安 710121
基金项目:  国家自然科学基金资助项目 61775180

摘要: 为了在较高的净增益条件下实现最小化喇曼增益平坦度,采用粒子群优化算法对As-S光纤与碲基光纤级联的光纤放大器各抽运光参量优化配置的方法,进行了理论分析和实验验证。结果表明,应用上述方法对得到的3组优化结果进行对比,在带宽为40nm的级联喇曼光纤放大器上,达到了平均增益为53.25dB、增益平坦度为0.30dB的较高性能。与传统光纤放大器和现有的级联光纤放大器相比,使用粒子群优化算法对各抽运光的功率和波长优化后,会使级联光纤放大器性能明显提高,这在未来的光纤通信中具有一定实用价值。

English Abstract

    • 随着5G技术的广泛应用和光纤通信网络逐渐发展,“三超”系统这个主题作为下一代通信网络的追求目标[1],这意味着对通信网络中的系统容量与传输速率提出了更高的要求。喇曼光纤放大器(Raman fiber amplifier,RFA)作为光纤通信网络中的重要器件,由于其具有高增益、响应速度快、低噪声和宽带宽等优良特性,在光纤通信领域中受到广泛关注。

      目前,为了提高喇曼光纤放大器的性能,主要采用的结构有以下3种:(1)多波长抽运共同放大信号光[2]; (2)通过两段光纤级联,达到增益补偿; (3)掺杂光纤放大器与喇曼光纤放大器组成混合光纤放大器[3]。2006年,YAN等人使用7个后向抽运与遗传算法结合实现了开关增益仅为15.55dB、增益平坦度为0.87dB的喇曼放大[4]。2012年,ZHOU等人利用两段铋基掺铒光纤级联的结构方式实现了增益宽带为90nm、平均增益为35.7dB,但增益平坦度大于2dB的宽带光纤放大器[5]。2017年,JIANG等人采用多波长抽运组合的方式,使用4个抽运光达到了增益为24.48dB、增益平坦度小于0.1dB, 但其传输带宽仅为25.6nm[6]。可见上述光纤放大器都无法同时在带宽、增益和平坦度3个方面达到较为理想的性能水平。因此需要继续对光纤放大器的性能参量优化提升,才能使其达到“三超”系统对于放大器的性能要求。

      由于光纤传输中存在光纤损耗,光信号无法在长距离无中继的系统中传输[7]。因此使用粒子群优化算法(particle swarm optimization,PSO)对级联喇曼光纤放大器的各抽运光波长与功率进行优化来达到高增益的同时具有好的增益平坦度[8-9]。本文中设计了一种As-S光纤与碲基光纤级联的喇曼光纤放大器,由于As-S光纤和碲基光纤都具有较高的增益系数[10],再通过先增益后补偿的结构方式使级联喇曼光纤放大器具有较高的增益和较好的增益平坦度。但仅靠级联光纤并无法达到理想的增益平坦度,于是使用粒子群优化算法通过对5个抽运光的参量配置,在40nm的传输带宽内,将增益提高到53.25dB和增益平坦度降低为0.30dB。

    • RFA将信号光放大是通过受激喇曼散射效应实现的。当具有高功率的抽运光与信号光同时注入光纤时,会产生受激喇曼散射效应。在实际应用中,主要考虑抽运光对信号光的受激喇曼散射效应,忽略其它非线性效应,通过求解N信道单向受激喇曼散射耦合波方程[11]

      $ \left\{ {\begin{array}{*{20}{c}} {\frac{{{\rm{d}}{n_i}(z)}}{{{\rm{d}}z}} = -{\alpha _i}{n_i}\left( z \right) + \sum\limits_{j = 1}^N {{r_{ij}}{n_j}\left( z \right){n_i}\left( z \right), } }\\ {\left( {i = 1, \ldots , N} \right)}\\ {{n_i}\left( z \right)\left| {_{_{z = 0}}} \right. = {n_i}\left( 0 \right), (i = 1, \ldots , N)} \end{array}} \right. $

      (1)

      式中,i=1,2, …, N指的是一共有1到N个信道;ni(z)和nj(z)分别代表z处第i, j个信道中前向传输的光子通量;ni(0)是各信道z在0处入射的初始光子通量,它是恒定值;αi表示第i个信道中信号光的线性衰减系数;rij=gR/Ae为第i信道与第j信道之间前向传输光子通量的喇曼增益效率,Ae表示光纤的有效截面积[12]gR是抽运光与其它信道的信号光之间的喇曼增益系数。

      经过(1)式,令1,2信道为抽运光信道,可以得到级联RFA的信号光喇曼增益G表达式为:

      $ \begin{array}{l} G = 10{\rm{lg}}\frac{{{\mathit{P}_\mathit{i}}\left( \mathit{Z} \right)\left| {_{_{_{Z = {L_1} + {L_2}}}}} \right.}}{{{P_i}(0)}} = \\ 10{\rm{lg}}{\left\{ {\frac{{{{\rm{e}}^{-{\alpha _1}{L_1}}}\left[ {\frac{{{{\bar v}_1}}}{{{\nu _{11}}}}{P_{11}}\left( 0 \right) + \frac{{{{\bar v}_1}}}{{{\nu _{12}}}}{P_{12}}\left( 0 \right)} \right]}}{{\frac{{{{\bar v}_1}}}{{{\nu _{11}}}}{P_{11}}\left( 0 \right){{\rm{e}}^{{G_{11i}}}} + \frac{{{{\bar v}_1}}}{{{\nu _{12}}}}{P_{12}}(0){{\rm{e}}^{{G_{12i}}}}}}} \right._1} \times \\ \frac{{{{\rm{e}}^{-{\alpha _2}{L_2}}}[\frac{{{{\bar v}_2}}}{{{\nu _{21}}}}{P_{21}}\left( 0 \right) + \frac{{{{\bar v}_2}}}{{{\nu _{22}}}}{P_{22}}\left( 0 \right) + \frac{{{{\bar v}_2}}}{{{\nu _{23}}}}{P_{23}}\left( 0 \right)]}}{{\frac{{{{\bar v}_2}}}{{{\nu _{21}}}}{P_{21}}\left( 0 \right){{\rm{e}}^{{G_{21i}}}} + \frac{{{{\bar v}_2}}}{{{\nu _{22}}}}{P_{22}}\left( 0 \right){{\rm{e}}^{{G_{22i}}}} + \frac{{{{\bar v}_2}}}{{{\nu _{23}}}}{P_{23}}\left( 0 \right){{\rm{e}}^{{G_{23i}}}}}} \end{array} $

      (2)

      $ \begin{array}{*{20}{c}} {{\rm{ }}{G_{11i}} = \frac{{{g_{i11}}}}{{M{A_{\rm{e}}}}}{P_{11}}\left( 0 \right){L_{{\rm{e}}, 1}}, {\rm{ }}{G_{12i}} = \frac{{{g_{i12}}}}{{M{A_{\rm{e}}}}}{P_{12}}\left( 0 \right){L_{{\rm{e}}, 1}}, }\\ {{\rm{ }}{G_{21i}} = \frac{{{g_{i21}}}}{{M{A_{\rm{e}}}}}{P_{21}}\left( 0 \right){L_{{\rm{e}}, 2}}, {\rm{ }}{G_{22i}} = \frac{{{g_{i22}}}}{{M{A_{\rm{e}}}}}{P_{22}}\left( 0 \right){L_{{\rm{e}}, 2}}, }\\ {{G_{23i}} = \frac{{{g_{i23}}}}{{M{A_{\rm{e}}}}}{P_{23}}\left( 0 \right){L_{{\rm{e}}, 2}}} \end{array} $

      (3)

      式中, v1v2分别为每段光纤中各抽运光νij的均值; L1L2分别为两段光纤的长度; Pi为第i信道的光功率;假设每段光纤上的衰减系数相同,α1α2分别为As-S光纤和碲基光纤的衰减系数;P11, P12分别表示第1段光纤中抽运光1, 2的功率,P21, P22, P23分别表示第2段光纤中抽运光1, 2和3的功率;M是光纤的保偏系数; gi11, gi12为第1段光纤中第i信道与第1、2信道之间的喇曼增益系数; gi21, gi22, gi23为第2段光纤中第i信道与3个抽运光之间的喇曼增益系数;Le, 1, Le, 2分别是第1段与第2段光纤的有效作用距离。

    • 粒子群优化算法是一种较为先进的算法[13],相比于遗传算法它不需要变异和交叉这两个步骤,使算法具有简单和搜索速度快的特点[14]。粒子群优化算法可以动态地追踪当前的搜索情况并调整搜索范围,十分适用于求解非线性微分方程[15-16]

      对于喇曼光纤放大器的适应度函数为增益平坦度GΔ,函数表示为:

      $ {G_\Delta } = {\rm{max}}(G)-{\rm{min}}(G) $

      (4)

      i个粒子的极值被记作pbest,即每个粒子的最优位置表示为:

      $ {p_{\rm best}} = ({p_{i1}}, {p_{i2}}, \ldots , {p_{iD}}), \left( {i = 1, 2, \ldots ,M} \right) $

      (5)

      式中,D为搜索维度,pi1, pi2, …, piD分别被记作1~M个粒子每一个维度下的最优位置。整个粒子群的最优解值记作gbest,即全局最优位置可以表示为:

      $ {g_{best}} = ({g_1}, {g_2}, \ldots , {g_D}) $

      (6)

      式中,g1, g2, …, gD被记作每一个维度下的全局最优位置。

      根据图 1中的算法流程将每个抽运光的波长和功率看作是两个维度[17],并带入算法中计算,最终可以得到满足最大输出增益和最优增益平坦度条件下的最优的抽运光参量配置。

      Figure 1.  Flow chart of particle swarm optimization algorithm

    • 利用5个抽运光和As-S光纤与碲基光纤级联的RFA结构图如图 2所示。图中,OF为光滤波器(optical filter),OC为光耦合器(optical coupler)。在第1段光纤加入N个信号光与两个抽运光,通过光复用单元(optical multiplexer unit, OMU)进入长度为L1的As-S光纤放大,将两抽运光滤除。在第2段光纤处注入3个抽运光,与放大后的信号光一同进入长度为L2的碲基光纤实现补偿作用[18],最后经过光解复用单元(optical demultiplexer unit, ODU)输出信号光。

      Figure 2.  Structure diagram of As-S fiber and tellurium based fiber cascade amplifier

    • 图 3分别为As-S光纤与碲基光纤的喇曼增益谱。相比于常见的石英光纤增益谱增益大大提高。可以清晰地看到, As-S光纤喇曼频移[19]范围在[260cm-1, 350cm-1]时,喇曼增益谱处于上升阶段用作第1段放大光纤;碲基光纤喇曼频移[20]范围在[400cm-1, 510cm-1]时,喇曼增益谱处于下降阶段可以对第1段光纤实现增益补偿从而达到平坦。

      Figure 3.  Gain spectrum of Raman fiber

      利用As-S光纤喇曼频移范围在[260cm-1, 350cm-1]与碲基光纤喇曼频移范围在[400cm-1, 510cm-1]处的喇曼增益谱进行前增益后补偿实现增益平坦。按上述范围进行拟合直线得:gR, 1ν)=k1Δν+b1,频移Δν∈[260cm-1, 350cm-1],gR, 2ν)=k2, Δν+b2Δν∈[400cm-1, 510cm-1], 其中,斜率k1=1.391×10-13m·cm/W,截距b1=-3.731×10-11m/W;斜率k2=-1.220× 10-14m·cm/W,截距b2=7.45×10-12m/W。仿真参量配置如下:两段光纤有效截面积分别是Ae, 1=2.67×10-11m2, Ae, 2=5.5×10-11m2;As-S光纤的衰减系数α1=550dB/km, 碲基光纤的衰减系数α2=26dB/km,保偏系数均为M=2, 两段光纤长度分别为L1=0.02km, L2=0.402km;凭借工程经验,第1段As-S光纤设置2个抽运光,抽运光功率分别为P11=2W, P12=2.5W, 抽运光的波长分别为λ11=1480.0nm, λ12=1475.5nm;第2段碲基光纤设置3个抽运光,抽运光功率分别为P21=2W, P22=2.1W, P23=2.6W,抽运光的波长分别为λ21=1488.2nm, λ22=1467.6nm, λ23=1476.8nm。

      图 4所示, 96路信号光经过第1段0.02km的放大光纤,使信号光功率得到明显的放大,再经过第2段0.402km的补偿光纤,使获得放大后的信号光随距离增加, 共同收敛于0.7W左右。由图 5可以看出,通过级联光纤和多抽运的作用方式下,其最终获得的放大器的输出增益平均值达到45.55dB,平坦度为1.2dB,相比于普通的光纤放大器增益提高了许多,但平坦度不是十分理想,后期可以通过使用优化算法来使其达到最优值。

      Figure 4.  Signal optical power varies with transmission distance

      Figure 5.  Signal optical output gain flatness

    • 在优化放大器功率之前,需要对一些必要的参量进行设置。如表 1所示,共采用5个抽运激光器对信号光放大,每一个抽运光由两个方面决定,分别为抽运光功率和抽运光波长,所以每一个粒子的维度就设置为10;抽运光的功率由PmaxPmin两个值限制功率搜索范围,抽运光波长由λmaxλmin来限制波长搜索范围,也就是确定两个边界条件。

      Table 1.  Basic parameter setting

      parameter name values
      number of iterations T 1000
      total number of particles M 50
      dimension of each particle D 10
      inertia weight w 0.8
      learning factor c1, c2 1, 1
      number of pumps n 5
      effective sectional area of Ae, 1, Ae, 2 26.7μm, 55μm
      wavelength upper limit λmax 1410nm
      lower wavelength limit λmin 1490nm
      upper limit of power Pmax 3.5W
      lower power limit Pmin 2W
      signal optical power P 0.01mW

      根据表 1中的参量设置并结合粒子群优化算法,每次运行后都能分别得到5个抽运光的波长及其对应的功率, 以及级联光纤放大器优化后的输出增益和增益平坦度。对其进行多次优化,并对获得的结果对比分析,就可以得到最佳的抽运光设置值。本文中共进行3次优化,如表 2所示(分别对应表中的1,2,3)。其中P11, P12, P21, P22P23分别表示5个抽运光的功率值,λ11, λ12, λ21, λ22, λ23分别表示抽运光的波长值;G表示放大器最后的输出增益的平均值;GΔ表示放大器的增益平坦度。

      Table 2.  The optimization results

      parameter name values
      1 2 3
      P11/W 2.7901 2.5200 2.8001
      P12/W 2.6500 2.4201 2.7500
      P21/W 3.2205 2.5205 3.2310
      P22/W 3.1711 2.6712 3.1691
      P23/W 2.9511 2.9531 2.9601
      λ11/nm 1451.4 1460.8 1486.4
      λ12/nm 1481.9 1459.7 1489.8
      λ21/nm 1454.6 1451.1 1444.2
      λ22/nm 1440.8 1440.7 1449.8
      λ23/nm 1440.8 1440.7 1449.8
      G/dB 49.20 53.25 44.80
      GΔ/dB 0.39 0.30 0.40

      通过表 2优化后的数值仿真后,得到图 6所示的输出增益图。粒子群优化算法主要对抽运光的波长和功率进行优化,采用2组优化的数值仿真,利用短波长高功率的抽运光对长波长低功率的信号光进行放大的原理,得到3组不同增益和不同平坦度的增益谱。

      Figure 6.  Cascade RFA output gain diagram

      结合表 2图 6可知, 第1组的平均增益为49.20dB,增益平坦度为0.39dB;第2组的平均增益为53.25dB,增益平坦度是0.30dB;第3组的平均增益为44.80dB,增益平坦度为0.40dB;而由图 6可以清晰地看出, 第2组的优化结果在获得较大的增益的同时增益平坦度最小符合放大器的要求。表 2中第2组优化结果抽运光的整体功率相比于1组和3组都相对比较小,但却获得了3组中最大的输出增益。这是由于抽运光功率逐渐增加,使抽运光之间的非线性效应也随之增强,能量转换就越来越强,抽运光对于信号光的放大作用就会逐渐减弱。因此可以得出,抽运光功率并不是越大越好,而是有一定的变化范围。另外,对于级联光纤放大器两段的抽运功率设置都在相同范围,由表 2可以看出,第2段碲基光纤的抽运光功率, 每一组优化结果都相对于第1段硫系光纤的优化后抽运光功率要大,这是由于硫系光纤的增益谱要高于碲基光纤,只有将碲基光纤的抽运光功率加大,才能够使其最后输出的增益平坦。

    • 设计了一种基于As-S光纤与碲基光纤级联的新型喇曼光纤放大器,对其依据N信道单向受激喇曼散射耦合波方程和粒子群优化算法建立了数学模型。同时,通过工程经验设置抽运光参量,仿真得到平均输出增益为45.55dB及增益平坦度为1.2dB;虽然增益相比传统的喇曼光纤放大器有所提高,但是增益平坦度大于1dB无法达到光纤放大器的性能要求。通过使用粒子群优化算法,对两段光纤注入的各抽运光功率及波长进行优化。3组优化后的平均增益分别为49.20dB, 53.25dB和44.80dB,增益平坦度分别为0.39dB, 0.30dB和0.40dB,实现了获得高增益与好的增益平坦度这个目标。比较分析3组优化结果后得出:优化后平均输出增益为53.25dB, 增益平坦度在0.30dB,相比于未通过算法优化前,即提高了增益,又降低了增益平坦度,使其更加适用于5G光通讯时代。使用粒子群优化算法相比于凭借工程经验设置参量的方法,前者获得了更好的增益性能,这证实了粒子群优化算法对于喇曼光纤放大器性能优化的实用性与可行性。这种设计方法不仅为喇曼光纤放大器的设计提供了一种新的思路,结合粒子群算法对于全局最优解解答的适用性,又可以高效简单地优化光纤放大器的参量性能。

参考文献 (20)

目录

    /

    返回文章
    返回