高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

456nm半导体蓝激光眩目效应研究

倪波 范应威 罗振坤 马琼 梁洁 康宏向

引用本文:
Citation:

456nm半导体蓝激光眩目效应研究

    作者简介: 倪波(1989-),男,硕士研究生,主要从事激光医学研究.
    通讯作者: 康宏向, khx007@163.com
  • 中图分类号: Q631

Study on the dazzle effect of 456nm blue laser

    Corresponding author: KANG Hongxiang, khx007@163.com
  • CLC number: Q631

  • 摘要: 为了探讨蓝激光眩目效应量效关系,利用视网膜电流图研究456nm半导体蓝激光照射兔眼的眩目效应,通过视网膜电流图b波振幅恢复时间评价蓝激光致眩效果,绘制剂量-恢复时间曲线,并通过眼底照相机观察激光辐照后的视网膜损伤情况。结果表明,456nm蓝激光眩目效果明显,视网膜电流图b波振幅的恢复时间随蓝激光辐照剂量的增加而延长,恢复时间与剂量间呈良好的线性关系,辐照后即刻和辐照24h后观察眼底未见损伤。本研究将为蓝激光的眩目应用提供了参考。
  • Figure 1.  Schematic diagram of laser radiation device for rabbit eyes

    Figure 2.  ERG after laser irradiation

    Figure 3.  ERG after laser irradiation with different doses

    Figure 4.  Recovery time of b-wave induced by different doses of blue laser

    Figure 5.  Retinal fundus photography

    Table 1.  Recovery time of b-wave in ERG after laser irradiation

    predicted dose/(mJ·cm-2) average time/s minimum time/s maximum time/s standard deviation
    0.020 1.11 0.6 1.60 0.37
    0.050 1.59 1.08 2.60 0.45
    0.100 2.10 1.56 3.64 0.53
    0.200 3.50 2.46 3.72 0.66
    0.499 3.97 2.50 5.08 0.71
    0.998 4.82 2.76 6.78 0.91
    3.494 7.38 4.60 8.30 1.16
    5.990 8.77 5.84 10.62 1.12
    8.985 9.87 7.00 12.40 1.32
    11.980 12.01 8.98 12.70 0.90
    13.997 13.55 8.68 12.90 1.30
    16.015 14.52 8.69 15.30 1.62
    下载: 导出CSV
  • [1]

    PETERS A. Blinding laser weapons[J]. Medicine Conflict and Survival, 1996, 12(2):107-113. doi: 10.1080/13623699608409267
    [2]

    LIU X H, GUO S X. Research on non-lethal efficiency of low energy laser weapons[J]. Laser Journal, 2015, 36(11):99-103 (in Chin-ese).
    [3]

    YIU G, ITTY S, TOTH C A. Ocular safety of recreational lasers[J]. JAMA Ophthalmology, 2014, 132(3):245-246. doi: 10.1001/jamaophthalmol.2013.5647
    [4]

    KANG H X, QIAN H W, XIAO R, et al. Study on dazzle effect of green laser with pulse width of 7ns, 15ns and 120ms[J]. Chinese Journal of Laser Medicine & Surgery, 2010, 19(6):393-394 (in Chinese). doi: 10.1007/s10815-007-9152-7
    [5]

    YANG Z F, WANG J R, QIAN H W. Biological foundation and technical development of disabling laser weapons[J]. Military Medical Sciences, 2014(3):220-223 (in Chinese).
    [6]

    JIN Z, KEIKO A, UED A, et al. Bisretinoids mediate light sensitivity resulting in photoreceptor cell degeneration in mice lacking the receptor tyrosine kinase Mer[J]. The Journal of Biological Chemistry, 2018, 293(50):19400-19410. doi: 10.1074/jbc.RA118.005949
    [7]

    FANG Y Q, MAO Sh J, YANG Zh Y, et al. Studies on flash blindness Ⅰ. The effects of flash brightness, exposure time and adaptive state on the recovery time of flash blindness[J]. Acta Psychologica Sinica, 1981(4):413-418 (in Chinese).
    [8]

    ZHANG Zh Zh, CHEN Y. Development and evaluation of laser dazzle weapon[J]. Police Technology, 2011(3): 69-72 (in Chinese). doi: 10.1016/S1872-2040(07)60002-4
    [9]

    WILLIAMSON C A, MCLIN L N, RICKMAN J M, et al. Wavelength and ambient luminance dependence of laser eye dazzle[J]. Applied Optics, 2017, 56(29):8135-8147. doi: 10.1364/AO.56.008135
    [10]

    WILLIAMSON C A, RICKMAN J M, FREEMAN D A, et al. Measuring the contribution of atmospheric scatter to laser eye dazzle[J]. Applied Optics, 2015, 54(25):7567-7574. doi: 10.1364/AO.54.007567
    [11]

    LUO Zh X, ZHAN R J, ZHANG H B. A study on laser blinding device parameters based on collective events[J]. Laser Journal, 2016, 37(11):18-23 (in Chinese).
    [12]

    XIAO R, KANG H X, LIANG J, et al. Experimental research on biological effects of laser flash blindness[J]. Laser & Infrared, 2010, 40(11):1182-1185 (in Chinese).
    [13]

    LI J Zh, CHEN Zh Q, LIN L, et al. Development of all-solid-state 447nm lasers[J]. Laser Technology, 2009, 33(1):42-45 (in Ch-inese).
    [14]

    WANG W L, WANG J, XU L W, et al. Tunable fiber lasers based on semiconductor saturable absorber mirrors[J]. Laser Technology, 2019, 43(5): 672-675 (in Chinese). doi: 10.1063/1.4899133
  • [1] 韩晓俊李正佳朱长虹 . 医用半导体激光器的温度控制. 激光技术, 1998, 22(4): 250-253.
    [2] 康俊陈建国李明中隋展 . 由输出光脉冲选择半导体激光器泵浦电流. 激光技术, 2001, 25(3): 196-199.
    [3] 曹三松 . 高功率半导体激光器评述. 激光技术, 2000, 24(4): 203-207.
    [4] 曾小东安毓英于常青 . 半导体激光器近场测量技术. 激光技术, 1998, 22(2): 127-129.
    [5] 郎佳红顾彪徐茵秦福文 . GaN基材料半导体激光器综述. 激光技术, 2003, 27(4): 321-324,327.
    [6] 张志军吴正德樊勇唐小宏 . 高速半导体激光器的匹配技术. 激光技术, 1995, 19(4): 239-243.
    [7] 陆洋张菁陈建国李大义 . 双稳外腔半导体激光器(ECLD)模式转换的数值描述. 激光技术, 2002, 26(3): 180-182.
    [8] 朱晓鹏甘巧强任刚宋国锋叶晓军孙永伟曹青陈良惠 . 半导体激光器相对强度噪声的实验研究. 激光技术, 2005, 29(3): 241-243.
    [9] 赵延罗斌潘炜 . 光纤环形腔半导体激光器弛豫振荡的分析. 激光技术, 2002, 26(6): 416-418.
    [10] 孙梅生程遥方星豪 . 半导体激光器在高压反馈电路中的应用. 激光技术, 2003, 27(6): 569-571.
    [11] 甘巧强朱晓鹏潘学俭邓捷宋国锋陈良惠 . 半导体激光器光束特性的计算机模拟与实验研究. 激光技术, 2004, 28(3): 298-302.
    [12] 亢俊健张世英苏美开王大成 . 半导体激光器加速寿命测试系统研制. 激光技术, 2004, 28(3): 228-230,254.
    [13] 黄珊邓磊敏杨焕段军 . 基于ZEMAX的半导体激光器匀光设计. 激光技术, 2014, 38(4): 522-526. doi: 10.7510/jgjs.issn.1001-3806.2014.04.017
    [14] 高平东张法全 . 高精度半导体激光器温控系统的设计与实现. 激光技术, 2014, 38(2): 270-273. doi: 10.7510/jgjs.issn.1001-3806.2014.02.026
    [15] 赵同刚任建华赵荣华饶岚王丽丽林金桐吴炜郭永新 . 半导体激光器实现波长转换的理论和实验分析. 激光技术, 2005, 29(2): 216-218.
    [16] 方刘海文继国江月成潘冬帅欣 . 基于数字滤波的半导体激光器温控系统设计. 激光技术, 2016, 40(5): 701-705. doi: 10.7510/jgjs.issn.1001-3806.2016.05.017
    [17] 王宗清段军曾晓雁 . 大功率半导体激光器高精度温控系统研究. 激光技术, 2015, 39(3): 353-356. doi: 10.7510/jgjs.issn.1001-3806.2015.03.016
    [18] 郭海平万辰皓许成文严拓王东升 . 外腔半导体激光器动态模稳定性的研究. 激光技术, 2016, 40(5): 706-710. doi: 10.7510/jgjs.issn.1001-3806.2016.05.018
    [19] 梅剑春叶青田建国 . 多路半导体激光器驱动电路设计. 激光技术, 2018, 42(2): 245-248. doi: 10.7510/jgjs.issn.1001-3806.2018.02.020
    [20] 罗亮胡佳成王婵媛刘泽国 . 高精度半导体激光器驱动电源及温控电路设计. 激光技术, 2017, 41(2): 200-204. doi: 10.7510/jgjs.issn.1001-3806.2017.02.011
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  170
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-14
  • 录用日期:  2020-05-20
  • 刊出日期:  2020-11-25

456nm半导体蓝激光眩目效应研究

    通讯作者: 康宏向, khx007@163.com
    作者简介: 倪波(1989-),男,硕士研究生,主要从事激光医学研究
  • 1. 安徽医科大学 研究生院,合肥 230032
  • 2. 中国人民解放军军事科学院 军事医学研究院 辐射医学研究所,北京 100850

摘要: 为了探讨蓝激光眩目效应量效关系,利用视网膜电流图研究456nm半导体蓝激光照射兔眼的眩目效应,通过视网膜电流图b波振幅恢复时间评价蓝激光致眩效果,绘制剂量-恢复时间曲线,并通过眼底照相机观察激光辐照后的视网膜损伤情况。结果表明,456nm蓝激光眩目效果明显,视网膜电流图b波振幅的恢复时间随蓝激光辐照剂量的增加而延长,恢复时间与剂量间呈良好的线性关系,辐照后即刻和辐照24h后观察眼底未见损伤。本研究将为蓝激光的眩目应用提供了参考。

English Abstract

    • 激光眩目武器采用低能激光束辐照人眼使人产生眩晕、暂时失明、视力下降和眼部不适等症状,干扰视觉认知,使目标瞬间视觉功能下降,在一定程度上丧失战斗力而不造成永久性损伤[1-2]。激光照射眼睛的生物效应主要包括光热效应和光化学效应等。当眼睛受到大于损伤阈值的激光照射后会引起光热效应导致视网膜出现白斑、水肿和出血等[3]。可见光波段的激光在低于损伤阈值和人眼安全限值的低剂量下照射人眼可引起眩目效应[4]。其效应靶分子是视网膜感光色素,即位于视杆细胞内的视紫红质和位于视锥细胞内的视紫蓝质[5],光化学作用导致感光色素分解,机体再生感光色素进行补充。正常的视觉环境中机体能够维持感光色素的分解与再生动态平衡,但当突然遇到强光刺激时,机体的感光色素再生滞后于分解导致感光色素失衡[6]。感光色素失衡引起的视觉光化学反应变化、神经冲动以及高级神经认知反应是眩目效应的基本机制。

      眩目武器多采用人眼感光色素最敏感的蓝绿光[1],目前国内外对激光眩目效应已有较多研究[7-11],但主要是绿激光眩目效应[4, 12],对蓝激光引起的眩目量效关系研究尚未见到报道。半导体蓝光激光器体积小、重量轻、使用寿命长、便于携带[13-14],因此量化评估蓝激光眩目效应对眩目武器的研发设计很有参考意义。本文中以眼底吸收光谱曲线与人眼相似的青紫蓝灰兔为实验动物,在损伤阈值以下,通过激光照射青紫蓝灰兔眼,采用视网膜电流图(electroretinogram,ERG)记录并测量视网膜电位的恢复时间,以激光照后ERG b波恢复至照前幅度时间作为指标[4],对激光眩目时间进行量化,以此来分析蓝激光的致眩效果。

    • 实验动物为青紫蓝灰兔10只(北京科宇实验动物养殖中心),雌雄各半,体重3kg左右。试剂为速眠新注射液(长春军医大学兽医研究所);复方托吡卡胺滴眼液(参天制药有限公司)。仪器有:半导体蓝光激光器、PD300-3W-V1激光功率计(以色列Ophir公司)、GCI-73精密电子计时器(大恒新纪元科技股份有限公司)、BL-420F生物机能实验系统(成都泰盟软件有限公司)、DEC-100眼底照相机、CTN-W100输液泵、检眼镜等。

    • 实验前用复方托吡卡胺滴眼液散瞳,眼底镜观察兔眼眼底,视网膜正常方可用于实验。先使用注射器缓慢肌肉注射速眠新麻醉剂使之进入麻醉状态,待肌肉松弛后放置在特制的固定架上,再用注射泵经兔耳缘静脉注射给药,麻醉过程中注意监测麻醉状态,当进入深度麻醉后减至维持剂量。

    • 青紫蓝灰兔进入麻醉状态后,连接视网膜电图记录电极,环形角膜电极放置于角膜表面,参考电极和地电极分别固定于耳廓和前额正中。

    • 半导体蓝光激光器输出波长456nm蓝光,光束经光纤传输,透镜扩束准直,光阑限束,平行光正入射兔眼。激光功率计测量激光辐射功率,限束光阑通光孔直径0.7cm,通光面积0.385cm2。兔眼激光照射光路如图 1所示。

      Figure 1.  Schematic diagram of laser radiation device for rabbit eyes

    • 兔眼暗适应20min后,给予每秒一次闪光刺激,在视网膜电图上形成参考刺激脉冲信号,通过其脉冲幅值变化评估视网膜功能状态变化情况。设定蓝激光对兔眼的照射剂量,每眼激光照射12次为一组,用激光功率计对激光照射剂量进行测量,光电快门控制照射时间,照射时间为0.1s。一次给予蓝激光进行照射,通过生物机能实验系统对视网膜电图进行记录。

    • 采用检眼镜、眼底照相机对辐照前、辐照即刻及辐照24h后视网膜观察拍照分析眼底是否出现损伤。

    • 暗适应ERG波形中有可辨认的给光反应b波和撤光反应d波。b波、d波分别为图 2所示的正波和负波,选用波形尖锐、振幅较大的b波作为眩目效应恢复的评价指标。激光照射后,ERG波形有一过性消失或振幅减低,即表明有眩目效应发生。激光照射后ERG中波形恢复时间变化如图 2所示,不同剂量激光照射后ERG如图 3所示。

      Figure 2.  ERG after laser irradiation

      Figure 3.  ERG after laser irradiation with different doses

      持续动态记录兔眼ERG波形图,并测量不同波长不同剂量激光照射后ERG中b波的恢复时间。从图 2中可以看出,照后即刻出现一个比较尖的电信号,随后b波和d波出现一过性消失,随即b波和d波缓慢恢复,b波开始恢复时幅度很小,而后逐渐增高,直至恢复到照前水平,恢复时间即为两个b波波峰对应时间相减所得。激光照射后ERG中b波恢复时间的平均值、最小值、最大值以及标准差如表 1所示。

      Table 1.  Recovery time of b-wave in ERG after laser irradiation

      predicted dose/(mJ·cm-2) average time/s minimum time/s maximum time/s standard deviation
      0.020 1.11 0.6 1.60 0.37
      0.050 1.59 1.08 2.60 0.45
      0.100 2.10 1.56 3.64 0.53
      0.200 3.50 2.46 3.72 0.66
      0.499 3.97 2.50 5.08 0.71
      0.998 4.82 2.76 6.78 0.91
      3.494 7.38 4.60 8.30 1.16
      5.990 8.77 5.84 10.62 1.12
      8.985 9.87 7.00 12.40 1.32
      11.980 12.01 8.98 12.70 0.90
      13.997 13.55 8.68 12.90 1.30
      16.015 14.52 8.69 15.30 1.62

      暗适应条件下,蓝激光不同剂量致眩ERG b波恢复时间如图 4所示。兔眼眩目ERG b波平均恢复时间随着激光剂量的增加而增加。低剂量致眩时间不长,但增幅较大,超过0.2mJ/cm2剂量时所致眩目时间呈线性递增,在大剂量时激光致眩时间可达15s左右。

      Figure 4.  Recovery time of b-wave induced by different doses of blue laser

    • 激光眩目实验后,用眼底照相机观察视网膜损伤表现,未见激光损伤斑。由此可见,上述激光致眩所用照射剂量不会引起眼组织的器质性损伤。致眩实验后兔眼视网膜眼底照片如图 5所示。其中图 5a为照前眼底照片,图 5b为照后即刻眼底照片,图 5c为照后24h眼底照片。

      Figure 5.  Retinal fundus photography

    • 基于激光对眼的生物作用机理,开展兔眼激光眩目效应研究,通常,在高于安全阈值的激光照射下会引起兔眼角膜、晶状体、视网膜等组织的损伤效应[1],而低于安全阈值的激光剂量照射兔眼会引起无器质性损伤的眩目效应。人眨眼回避反应时间为0.1s~0.25s,一般选用0.25s以内的时间作为激光安全研究辐照时间[11],本文中研究眩目效应,选用0.1s辐照时间以探讨对绝大多数人的眩目效果。视网膜具有不同的感光色素,不同的感光色素对不同波长的激光的敏感性不同,因此不同波长激光引起的眩目时间也不尽相同。目前在可见激光波长中致眩时间最长的是蓝绿激光。半导体蓝色激光器因其性能稳定、小型化、高效率、长寿命等优点在眩目武器中具有良好的应用前景。鉴于此,本实验中采用半导体蓝激光照射兔眼,并运用视网膜电流图对兔眼激光致眩效应进行分析研究,了解其量效关系和作用特点。激光兔眼致眩效应与激光波长和照射剂量有关,提高激光照射剂量会增强眩目效应,使眩目时间延长,恢复时间与剂量间呈良好的线性关系。眩目武器照射目标使其视觉功能下降在一定程度上失去抵抗能力,更大的作用是使人心理产生恐慌而本能地逃避, 从而达到威慑和驱散的目的[11-12]。通过眼底照相机视网膜观察,最大辐照量为16mJ/cm2的蓝激光未见兔眼视网膜损伤,初步表明456nm半导体蓝光具有良好的眩目安全性。后续工作将进一步系统地开展半导体蓝光的安全性评估研究。

参考文献 (14)

目录

    /

    返回文章
    返回