高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯光束的飞秒激光光束质量检测技术

艾尼江·阿塔伍拉 阿布都热苏力·阿不都热西提

引用本文:
Citation:

基于高斯光束的飞秒激光光束质量检测技术

    作者简介: 艾尼江·阿塔伍拉(1990-), 男, 硕士研究生, 从事精密测量的研究工作.
    通讯作者: 阿布都热苏力·阿不都热西提, abdrusul@sina.com
  • 基金项目:

    国家自然科学基金资助项目 11465019

    国家自然科学基金资助项目 11664040

  • 中图分类号: O437

Detection technology of femtosecond laser beam quality based on Gaussian beam

    Corresponding author: Abuduresuli ABDUREXITI, abdrusul@sina.com
  • CLC number: O437

  • 摘要: 为了研究飞秒激光光束质量因子M2基于高斯光束的传播特性和能量密度分布, 在对飞秒激光光束质量因子进行理论研究的基础上, 进行了相应的数据计算, 给出了飞秒激光脉冲照射屏幕表面时所形成的环形光斑宽度的测量方法, 设计了一套由飞秒激光器、透镜、介电材料玻璃屏幕所组成的实验平台; 将该方法与刀口法和CCD法测量值进行了对照, 并用刀口法、CCD法确认了飞秒激光束腰在不同位置时的激光光束质量因子取值范围。结果表明, 光束质量因子M2xy方向上的测量值分别为2.04, 1.24。该实验结果与理论分析基本一致, 比刀口法和CCD法结构简单, 所得结论数据可靠、执行方便, 对精密测量有一定的参考价值。
  • Figure 1.  Gaussian beam mode (real and ideal)

    Figure 2.  Scheme of experimental principles

    Figure 3.  Curve of spot width

    Figure 4.  Variation of spot width in major and minor axis

    Figure 5.  Curve of beam spot radius

    Figure 6.  Beam spotradius on x direction

    Figure 7.  Beam spot radius on y direction

    Table 1.  Spot width of sample surface

    Dx/mm 0.03645 0.02700 0.03649
    Dy/mm 0.02360 0.01550 0.02355
    下载: 导出CSV
  • [1]

    LÜ B D. Analyzing some problems of laser beam quality [J].Laser Technology, 1998, 22(1):15-17(in Chinese).
    [2]

    QIAN L J, FAN D Y. On some basic issues rela-ted to light beam quality[J]. Journal of Chinese Lasers, 1994, 21(12):981-987(in Chinese).
    [3]

    ZENG B B.Physical concept and measurement on laser beam guality factor M2[J]. Applied Laser, 1994, 14(3):104-108(in Chinese).
    [4]

    LIU Y P, PENG X J, ZHAO G, et al. Structure design and analysis of cooling parts of compact lasers [J]. Laser Technology, 2017, 41(6): 886-887(in Chinese).
    [5]

    LI X L, TAO X Y. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality [J]. Acta Physica Sinica, 2004, 53(3):952-960(in Chinese).
    [6]

    STROHELHN J W. Laser beam propagation in the atmosphere [M]. Berlin, Germany:Spring Verlag, 1978:121-125.
    [7]

    LIU Sh F. Effect of thermal characteristics in laser transmitting channel on farfield beam quality [J]. Higher Power Laser and Particle Beams, 2004, 16 (6): 704-706(in Chinese).
    [8]

    SIEGMAN A E.New developments in laser reson-ators [J].Proceedings of the SPIE, 1990, 1224:1-14.
    [9]

    SIEGMAN A E. High-power laser beams: defining, measuring and optimizing transverse beam quali ty [J]. Proceedings of the SPIE, 1993, 1810: 758-765. doi: 10.1117/12.144597
    [10]

    DING P H, QU J. The research development of laser beam quality factor [J]. Applied Laser, 2007, 27(2): 113-117(in Chinese).
    [11]

    YANG X J, JIAO Q J, WANG Y T.Evaluation of beam quality of semiconductor lasers by beam parameter product [J]. Laser Tecno-logy, 2018, 42(6): 859-861(in Chinese).
    [12]

    SIEGMAN A E. How to (maybe) measure laser beam quality[J]. Journal of Optical Society of America, 1998, 17(2):184-199.
    [13]

    NIU Y X, WANG Y F, ZHU Sh Sh.Laser beam quality factor M2 and its mea surement [J].Laser Technology, 1999, 23 (1):38-41(in Chinese).
    [14]

    KUHN A, BLEWETT I J, HAND D P, et al. Optical fibre beam delivery of high-energy laser pulses: Beam quality preservation and fibre end-prepar-ation [J]. Optics and Lasers in Engineering, 2000, 34(4/6):273-288.
    [15]

    JOHNSTON T F.M2concept characterizes beam quality [J]. Laser Focus World, 1990, 26(5):173-183.
    [16]

    GAO C, WEBER R H.The problems with M2[J].Op-tics and Laser Technology, 2000, 32(4): 221-224. doi: 10.1016/S0030-3992(00)00045-1
    [17]

    LÜ B D, LUO Sh R. Parametric characterization of rotat-ionally symmetric hard-edged dif fracted beams [J].Journal of the Optical Society of America, 2004, 21(2): 193-198. doi: 10.1364/JOSAA.21.000193
    [18]

    CHAFIQ A, HRICH A Z, BELAFHAL A. Parametric char acterizati on of Mathieu Gauss beams[J]. Optics Communications, 2009, 282(13):2590-2594. doi: 10.1016/j.optcom.2009.03.057
    [19]

    WANG Y, KAN H. Influences of CCD nonlinear response on mea-surement of propagation factor M2 of a laser beam [J].Journal of Optics, 2011, 13(1): 015708. doi: 10.1088/2040-8978/13/1/015708
    [20]

    CHEN Ch, ZHENG J J, WEI W. Measurement of laser beam quality M2 based on CCD[J].Chinese Journal of Luminescence, 2017, 38(5): 642-647(in Chinese). doi: 10.3788/fgxb20173805.0642
    [21]

    LI L, GONG M L, LIU X Zh, et al. A software for laser beam analysis [J].Laser Technology, 2000, 24(6): 405-408(in Chinese).
    [22]

    LIU T.Study on the characteristics of 40GW femt osecond laser beam [D]. Tianjin: Nankai University, 2005: 20-39(in Chinese).
  • [1] 陈培锋陈涛丘军林 . 材料加工用激光束质量初探. 激光技术, 1995, 19(5): 289-292.
    [2] 吕百达邵怀宗冯国英罗时荣蔡邦维 . 高光束质量磷酸盐钕玻璃板条多程放大系统的研究. 激光技术, 1998, 22(5): 261-264.
    [3] 张靳黄磊王东生殷聪巩马理 . 光学组合半导体激光器输出光束特性研究. 激光技术, 2007, 31(3): 228-231,241.
    [4] 吕百达 . 关于激光光束质量若干问题的分析. 激光技术, 1998, 22(1): 14-17.
    [5] 季小玲吕百达 . 球差透镜对超高斯光束光束质量影响的研究. 激光技术, 2001, 25(3): 192-195.
    [6] 杨孝敬焦清局王乙婷 . 光束参量积对半导体激光器光束质量的评估. 激光技术, 2018, 42(6): 859-861. doi: 10.7510/jgjs.issn.1001-3806.2018.06.025
    [7] 杨峰余文峰陈佳元邬思明左都罗程祖海 . TEA CO2激光器同轴非稳腔光束质量. 激光技术, 2008, 32(3): 314-316.
    [8] 罗时荣吕百达黄鹭 . 非稳腔的远场光强分布和光束质量. 激光技术, 1999, 23(5): 281-284.
    [9] 卿与三江东林吕百达 . 平面波经方环衍射后的光束质量评价. 激光技术, 2001, 25(5): 335-337.
    [10] 马毅勇程祖海库耕张耀宁 . 孔栅分束镜测量强激光远场光束质量的研究. 激光技术, 1998, 22(2): 118-121.
    [11] 季小玲陶向阳吕百达 . 内光路热效应和像差对远场光束质量的影响. 激光技术, 2004, 28(5): 514-517.
    [12] 张恩涛季小玲吕百达 . 内光路中大气吸收对远场光束质量的影响. 激光技术, 2006, 30(1): 96-98.
    [13] 李廷红张彬蔡邦维李恪宇马驰 . 受激旋转喇曼散射对强紫外光光束质量的影响. 激光技术, 2004, 28(6): 655-657.
    [14] 李廷红张彬蔡邦维李恪宇马驰 . 受激旋转喇曼散射对强紫外光光束质量的影响. 激光技术, 2004, 28(6): 655-657.
    [15] 盛朝霞王再军 . 强激光输出窗口热行为对光束质量的影响. 激光技术, 2008, 32(3): 278-280.
    [16] 张建云陈帆马骏潘少华魏聪王敏刘戴明 . 熔融石英基片热形变及其对光束质量的影响分析. 激光技术, 2019, 43(3): 374-379. doi: 10.7510/jgjs.issn.1001-3806.2019.03.016
    [17] 郑晖林季鹏史斐戴殊韬江雄康治军翁文林文雄 . 倍频过程对激光光束质量及空间分布的影响. 激光技术, 2009, 33(1): 67-70.
    [18] 熊新健陈培锋王英杨亚楠李响 . 半导体侧面抽运板条激光器光束质量优化. 激光技术, 2019, 43(5): 724-728. doi: 10.7510/jgjs.issn.1001-3806.2019.05.026
    [19] 赵长明 . 激光光束质量参数测量的实验研究. 激光技术, 2000, 24(6): 341-344.
    [20] 丘军林 . 高功率激光器的光束质量及其对激光加工的影响. 激光技术, 1994, 18(2): 86-91.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  192
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-14
  • 录用日期:  2019-03-15
  • 刊出日期:  2019-11-25

基于高斯光束的飞秒激光光束质量检测技术

    通讯作者: 阿布都热苏力·阿不都热西提, abdrusul@sina.com
    作者简介: 艾尼江·阿塔伍拉(1990-), 男, 硕士研究生, 从事精密测量的研究工作
  • 新疆大学 物理科学与技术学院, 乌鲁木齐 830046
基金项目:  国家自然科学基金资助项目 11465019国家自然科学基金资助项目 11664040

摘要: 为了研究飞秒激光光束质量因子M2基于高斯光束的传播特性和能量密度分布, 在对飞秒激光光束质量因子进行理论研究的基础上, 进行了相应的数据计算, 给出了飞秒激光脉冲照射屏幕表面时所形成的环形光斑宽度的测量方法, 设计了一套由飞秒激光器、透镜、介电材料玻璃屏幕所组成的实验平台; 将该方法与刀口法和CCD法测量值进行了对照, 并用刀口法、CCD法确认了飞秒激光束腰在不同位置时的激光光束质量因子取值范围。结果表明, 光束质量因子M2xy方向上的测量值分别为2.04, 1.24。该实验结果与理论分析基本一致, 比刀口法和CCD法结构简单, 所得结论数据可靠、执行方便, 对精密测量有一定的参考价值。

English Abstract

    • 飞秒激光是一种超短脉冲激光,随着在各领域的广泛应用,其光束特性的研究吸引了学者们的关注,尤其是飞秒激光光束质量如何评价的问题。由于飞秒激光具有光束能量高、脉冲宽度短、光斑尺寸小等特性, 传统的测量法根本行不通。因此,设计一种新的测量实验平台来估算飞秒激光光束质量因子是十分必要的。本研究对设计飞秒激光光束质量因子测量系统、提高测量精度、优化误差等有着重要意义[1-3]

      直至20世纪末,评价激光光束质量依然没有适当的方法[4-8]。1990年,SIEGMAN基于光束远场发散角和束宽二阶矩定义[9-10],给出了评估光束质量的质量因子M2的概念[11-12]。质量因子M2是一种描述激光光束质量的参量, 能够定量地描述单模、多模激光光束的质量[12-13]。质量因子的特性对光束质量、束宽和光束远场发散角及其传输特性和应用的研究开辟出新的篇章[14-15]。此后,光束质量因子M2被国际标准化组织推荐为评价激光光束束质量的参量[16]。从此光束质量评价的研究飞速进展。1993年,SIEGMAN对激光光束质量因子进一步研究,指出了高功率激光光束质量因子和不同光束的质量因子的测量方法。2004年,LV等人对硬边衍射平顶高斯光束质量子M2进行测量。CHAFIQ等人[18]对马修-高斯光束(Mathieu-Gaussian beam, MGB)的质量因子进行测量。WANG等人[19]利用CCD相机研究了不同非线性激光光束质量因子。CHEN等人[20]提出一种新的方法, 对He-Ne激光的质量因子进行研究, 得到了1.2~2.33范围内的数量值。虽然上述的研究成果某程度上评价了各种激光光束质量,但对飞秒激光质量的评价和质量因子的取值范围的研究还不够。

      本文中基于飞秒激光高斯光束能量和能量密度分布及相关理论,探讨了飞秒激光光束质量因子,实验中用凸透镜来对光束进行聚焦变换,选出光斑宽度不同的3个点且屏幕在此3点时出现的光斑宽度进行测量。在上述的理论基础下, 利用MATLAB进行仿真分析,为了保证该方法的正确性,与CCD测量法、刀口法测量值进行了比较。

    • 由质量因子定义可知,激光光束质量因子M2是实际光束束腰宽度和光束远场发散角的乘积比上理想高斯光束的束腰宽度和光束远场发散角的乘积来确定的。对于基模高斯光束,M2的值为1, 但是在实际测量中,无法得到由其定义得到的值,目前常用的方法是首先对光束宽度进行测量, 然后根据得到的数据进行双曲线拟合, 最后由双曲线拟合曲线来获取光束质量因子。但由于飞秒激光光束具有独特的性质,不同于普通激光光束质量的测量,所以用光束能量密度与光斑宽度的关系来检测飞秒激光质量因子是目前比较可信的测量方法之一。由照射到屏幕上的光束能量密度和光束半径的关系, 可以获得沿光束轴的光束半径。

      根据Siegman定义, 飞秒激光光束质量因子可表示为:

      $ {M^2} = \frac{{{w_{\rm{r}}}(z)\mathit{\Theta }}}{{{w_{\rm{i}}}(z)\theta }} = \frac{{\rm{ \mathsf{ π} }}}{{4\lambda }} \cdot {w_{\rm{r}}}(z)\mathit{\Theta } $

      (1)

      式中, wr(z), wi(z), Θ, θ分别为实际高斯光束半径、基模高斯光束半径、实际光束发散角和理想光束发散角。经过凸透镜的高斯光束沿光轴的光束模示意图如图 1所示。

      Figure 1.  Gaussian beam mode (real and ideal)

      沿光轴的高斯光束表达式为:

      $ \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;E\left( {r, z} \right) = \frac{{{w_0}}}{{w(z)}} \times {\rm{ }}\\ {\rm{exp}}\left\{ { - {\rm{i}}kz + {\rm{i}}\mathit{\Phi }\left( z \right) - {r^2}\left[ {\frac{1}{{{w^2}(z)}} + \frac{{{\rm{i}}k}}{{2R(z)}}} \right]} \right\} \end{array} $

      (2)

      式中, r, z, w0, k, Φ(z), w(z), R(z)分别表示为径向半径、光束轴、光束腰半径、波数、相位变化、光束轴z处的光束腰半径和波前曲率半径。其中理想光束腰半径与实际光束腰半径分别表示为:

      $ {w_{\rm{i}}}(z) = {w_0}{\left[ {1 + {{\left( {\frac{{\lambda z}}{{{\rm{ \mathsf{ π} }}{w_0}^2}}} \right)}^2}} \right]^{\frac{1}{2}}} $

      (3)

      $ {w_{\rm{r}}}(z) = {w_{{\rm{0, r}}}}{\left[ {1 + {{\left( {\frac{{{M^2}\lambda z}}{{{\rm{ \mathsf{ π} }}{w_{{\rm{0, r}}}}^2}}} \right)}^2}} \right]^{\frac{1}{2}}} $

      (4)

      沿光束轴的能量密度分布为:

      $ \begin{array}{l} \;\;\;\;F\left( r \right) = \frac{{2{E_\rm{p}}{k^2}}}{{\rm{ \mathsf{ π} }}} \times {\rm{ }}\\ \int_0^{a{w_0}} {\mathit{\rho }{\rm{exp}}} ( - {\mathit{\rho }^2}){{\rm{J}}_0}(\mathit{kr\rho }){\rm{d}}\mathit{\rho } \end{array} $

      (5)

      式中, Ep是总脉冲能量,波数k=2πw0/(),a是光束最小位置的截断孔径,J0是零阶贝塞尔函数, ρ是脉冲中心的径向距离,f是脉冲重复频率。高斯光束在光束腰半径为w(z)位置处的脉冲能量密度为:

      $ F\left( r \right) = {F_{\rm{p}}}{\rm{exp}}\left[ { - \frac{{{r^2}}}{{{w^2}(z)}}} \right] $

      (6)

      式中,w(z)为沿光束轴z处的光束腰半径。

      $ {F_{\rm{p}}} = \frac{{2{E_{\rm{p}}}}}{{{\rm{ \mathsf{ π} }}{w^2}(z)}} $

      (7)

      式中, Fp为峰值能量密度,r为径向半径,且代用r=D/2,由(6)式和(7)式可得:

      $ {D^2} = 2{w^2}\left( z \right){\rm{ln}}\left( {\frac{{{F_{\rm{p}}}}}{{{F_{{\rm{th}}}}}}} \right) = 2{w^2}\left( z \right){\rm{ln}}\left( {\frac{{{E_{\rm{p}}}}}{{{E_{{\rm{th}}}}}}} \right) $

      (8)

      式中,D为光斑直径,Eth为阈值能量,由(8)式得:

      $ w\left( z \right) = D{\left[ {2{\rm{ln}}\left( {\frac{{{E_{\rm{p}}}}}{{{E_{{\rm{th}}}}}}} \right)} \right]^{ - \frac{1}{2}}} $

      (9)
    • 本文中运用的实验系统由飞秒激光器、凸透镜、滑动平台、介电材料玻璃屏幕所组成的,如图 2所示。实验设计中用焦距为100mm凸透镜对飞秒激光光束进行聚焦变换,聚焦过程中基于光斑宽度的大小选出3个光斑点对其宽度进行测量。测量步骤如下:首先将屏幕放入透镜后面使固定不变,然后在光束沿线轴上,将透镜慢慢向屏幕方向移动, 透镜和屏幕间距恰好等于焦距时, 第1次在屏幕上出现的光斑宽度用光学显微镜放大,并进行尺寸测量。光斑宽度最小时对光斑宽度进行第2次测量,超越此位置时进行第3次测量(与第1次测量方法相同)。实验中透镜焦点和超越光斑宽度最小位置的测量目的就是为了确认光束腰,因为光束腰位置是高斯光束绝对平行传输的地方,光斑宽度比其它两个位置的光斑宽度小、光强最大及明显可以保证光束质量因子的精度。实验中测得的数据如表 1所示。不同测量点处的xy轴的测量值分别为Dx, Dy

      Figure 2.  Scheme of experimental principles

      Table 1.  Spot width of sample surface

      Dx/mm 0.03645 0.02700 0.03649
      Dy/mm 0.02360 0.01550 0.02355
    • 基于上述的实验方法测量了波长为780nm、脉冲宽度为200fs的飞秒激光光束照射到屏幕上时的光斑宽度。为了验证本文中提出的测量法的准确性,将表 1中的数据代入(8)式和(9)式, 用MATLAB进行仿真分析[21]图 3所示的是脉冲能量与光斑宽度之间的变化关系。从图 3中可以看出,光斑宽度随着能量的增大而增大,屏幕在瑞利范围内时, 光斑宽度变化沿光轴左右(透镜和屏幕)方向的趋势相同,并且光束腰处的宽度变化最小且明显,这个结果与实验结果一致。随着透镜屏幕方向移动,光斑宽度2维变化,如图 4所示。图中,z=0mm表示屏幕正好在光斑宽度最小位置处, 其光束腰左右两边分别为屏幕超越光束腰位置处与光束腰前。从图中不难发现,沿x, y方向的宽度变化的趋势和屏幕在光束腰时的结果与图 3的结果一致。

      Figure 3.  Curve of spot width

      Figure 4.  Variation of spot width in major and minor axis

      图 5中的两条曲线分别为x, y方向的光束曲线。由(9)式可知, 光束与屏幕接触面的光束腰半径为光斑宽度与能量分布导数之比。从图 5中可以看出,此光束曲线与基模光束曲线相似。根据(1)式计算得到的x, y方向的光束质量因子的值为2.04和1.24。

      Figure 5.  Curve of beam spot radius

      为了进一步验证该方法的准确性,用上述的两个值与CCD法测量的结果比较,结果如图 6图 7所示。图中两条曲线分别表示为用CCD法和3点法得到的光束曲线。图 6x方向光束曲线的比较。

      Figure 6.  Beam spotradius on x direction

      Figure 7.  Beam spot radius on y direction

      图 7y方向光束曲线的比较。从图 7中不难发现,用两种方法而得到的x, y方向的光束曲线基本上相似,屏幕在光束腰时的半径比CCD法得到的值大。本文中得到的M2的结果是2.04, 1.24, 相比CCD法得到的值大。表明实验结果与理论分析基本保持一致,数据差分别为0.04,0.031,此数值可以忽略不计。而由刀口法测得的M2取值范围在x方向约为1.16~1.43,在y方向约为1.65~2.33[22],该值与本文中得到的光束质量因子数量值也保持良好的一致性。这表明运用该方法可以测量飞秒激光光束质量因子。

    • 构建了一套由飞秒激光器、透镜、玻璃屏幕、滑动平台所组成的简单实验系统,对脉冲宽度为200fs的飞秒激光的光束质量因子M2进行了测量。实验过程中用焦距为100mm透镜对光束进行聚焦变换,并在透镜焦点、光斑宽度最小位置和超越此位置进行了光斑宽度测量。根据实验数据和相关理论,用MATLAB软件进行仿真分析,得到了xy方向的光束质量因子分别为2.04, 1.24。为了验证该数量值的可靠性,与CCD法和刀口法测量的光束质量因子值进行对比。结果表明,本文中的测量值与传统的CCD法和刀口法相比,具有较简单、数据可靠、执行方便等优点。

参考文献 (22)

目录

    /

    返回文章
    返回