高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EEMGSM光束在各向异性湍流中的光束质量因子研究

束杰 屈军

引用本文:
Citation:

EEMGSM光束在各向异性湍流中的光束质量因子研究

    作者简介: 束杰(1992-), 男, 硕士研究生, 现主要从事激光传输的研究.
    通讯作者: 屈军, qujun70@ahnu.edu.cn
  • 基金项目:

    中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室开放基金资助项目 SKLST201608

    国家自然科学基金资助项目 11374015

  • 中图分类号: O436

M2 factor of electromagnetic elliptic multi-Gaussian- Schell mode beam in anisotropic turbulence

    Corresponding author: QU Jun, qujun70@ahnu.edu.cn
  • CLC number: O436

  • 摘要: 为了探究矢量椭圆多高斯-谢尔模(EEMGSM)光束的传输特性, 基于广义惠更斯-菲涅耳原理和维格纳分布函数的二阶矩理论, 理论推导了EEMGSM光束在各向异性湍流中传输的质量因子解析表达式。通过数值计算和分析, 探究了初始偏振度、初始相干度、腰宽、波长和湍流结构常数等与质量因子的变化规律。结果表明, EEMGSM光束的质量因子随着阶数、波长和腰宽的增大而减小; 随着初始相干度和湍流结构常数的减小而减小; 在相同条件下, 具有大初始偏振度的EEMGSM光束的光束质量受各向异性的影响小于具有小初始偏振度的EEMGSM光束的光束质量; 且在相同条件下, EEMGSM光束的质量因子比标量椭圆高斯-谢尔模(EGSM)光束小, 即EEMGSM光束具有缓解各向异性湍流影响的优点。所得结论对于自由空间光通信的研究具有一定的理论参考价值。
  • Figure 1.  Dependence of the M2 factor of an EEMGSM beam in free space on the root mean square width σx of the spectral density along x direction and the initial coherence δxx of the x component of the field

    Figure 2.  Relationship between M2 factor of an EEMGSM beam and the initial beam-width ratio during anisotropic turbulent propagation

    Figure 3.  The normalized M2 factor of an EEMGSM beam on propagation in turbulent anisotropy for different values of the initial degree of polarization

    Figure 4.  The normalized M2 factor of an EEMGSM beam on propagation in turbulent anisotropy

    a—different initial correlation factors δxx and δyy b—different initial root mean square widths σx and σy of the spectral densities

    Figure 5.  Changes of the normalized M2 factor of an EEMGSM beam with

    a—mode orders b—wavelength c—turbulence structure parameter d—power law

    Figure 6.  The normalized M2 factor of an EEMGSM beam on propagation in turbulent atmosphere

    a—different values of inner scale of the turbulence l0 b—different values of outer scale of the turbulence L0

  • [1]

    SHIRAI T, DOGARIU A, WOLF E. Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Optics Letters, 2003, 28(8): 610-612. doi: 10.1364/OL.28.000610
    [2]

    WU G H, GUO H, YU S, et al. Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(5): 715-717. doi: 10.1364/OL.35.000715
    [3]

    GORI F, RAMIREZSANCHEZ V, SANTARSIERO M, et al. On genuine cross-spectral density matrices[J]. Journal of Optics, 2009, A11(8): 85706-85707. 
    [4]

    KOROTKOVA O, SAHIN S, SHCHEPAKINA E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America, 2012, A29(10): 2159-2164. 
    [5]

    ZHOU Y, YUAN Y Sh, QU J, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence[J]. Optics Express, 2016, 24(10): 10682-10693. doi: 10.1364/OE.24.010682
    [6]

    MEI Zh R, KOROTKOVA O. Random sources generating ring-shaped beams[J]. Optics Letters, 2013, 38(2): 91-93. 
    [7]

    WANG F, LIANG Ch H, YUAN Y Sh, et al. Generalized multi-Gaussian correlated Schell-model beam: From theory to experiment[J]. Optics Express, 2014, 22(19): 23456. doi: 10.1364/OE.22.023456
    [8]

    YUAN Y Sh, LIU X L, WANG F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 2013, 305(3): 57-65. 
    [9]

    KOROTKOVA O, SALEM M, WOLF E. The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence[J]. Optics Communications, 2004, 233(4): 225-230. 
    [10]

    ROYCHOWDHURY H, PONOMARENKO S, WOLF E. Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere[J]. Journal of Modern Optics, 2005, 52(11): 1611-1618. doi: 10.1080/09500340500064841
    [11]

    KOROTKOVA O. Scintillation index of a stochastic electromagnetic beam propagating in random media[J]. Optics Communications, 2008, 281(9): 2342-2348. doi: 10.1016/j.optcom.2007.12.047
    [12]

    REYNOLDS O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Proceedings of the Royal Society of London, 1883, 35(224/226): 84-99. 
    [13]

    KARMAN T V. On the statistical theory of turbulence[J].Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(2): 98-105. doi: 10.1073/pnas.23.2.98
    [14]

    TAYLOR G I. Flow in pipes and between parallel planes[J]. Proceedings of the Royal Society of London, 1937, 159(899): 496-506. doi: 10.1098/rspa.1937.0085
    [15]

    KOLMOGOROV A N. Reviews of topical problems: Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers[J]. Proceedings Mathematical & Physical Sciences, 1991, 434(1890): 9-13. 
    [16]

    OBUKHOV A M. Some specific features of atmospheric turbulence[J]. Journal of Geophysical Research, 1962, 67(8): 3011-3014. doi: 10.1029/JZ067i008p03011
    [17]

    WU G H, DAI W, TANG H, et al. Beam wander of random electromagnetic Gaussian-Shell model vortex beams propagating through a Kolmogorov turbulence[J]. Optics Communications, 2015, 336: 55-58. doi: 10.1016/j.optcom.2014.08.052
    [18]

    WU Zh N, XIE J R, YANG Y N. Design and implementation of beam shaping for high power semiconductor lasers[J]. Laser Technology, 2017, 41(3): 416-420(in Chinese). 
    [19]

    ZHANG D B, SONG Y H, WANG Q Sh, et al. Error analysis of laser divergence angle measurement[J]. Laser Technology, 2016, 40(6): 926-929(in Chinese). 
    [20]

    HAN L Q, WANG Zh B. Fiber coupling efficiency and Strehl ratio for space optical communication based on adaptive optics correction[J]. Infrared and Laser Engineering, 2013, 42(1): 125-129(in Chinese). 
    [21]

    KANG X P, LU B D. Applicability of kurtosis parameter characterizing the degree of sharpness of beam intensity distribution[J]. Laser Technology, 2005, 29(4): 426-428(in Chinese). 
    [22]

    ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagation through turbulent atmosphere[J]. Laser Technology, 2016, 40(5): 750-755(in Chinese).
    [23]

    MEI Zh R, MAO Y H, WANG Y Y. Electromagnetic multi-Gaussian Schell-model vortex light sources and their radiation field properties[J]. Optics Express, 2018, 26(17): 21992-22000. doi: 10.1364/OE.26.021992
    [24]

    ZHU Sh J, CAI Y J, KOROTKOVA O. Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam[J]. Optics Express, 2010, 18(12): 12587-12598. doi: 10.1364/OE.18.012587
    [25]

    WANG F, KOROTKOVA O. Random optical beam propagation in anisotropic turbulence along horizontal links[J]. Optics Express, 2016, 24(21): 24422-24434. doi: 10.1364/OE.24.024422
    [26]

    SHIRAI T, DOGARIU A, WOLF E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America, 2003, A20(6):1094-1102. 
  • [1] 周正兰袁扬胜束杰徐翔屈军 . 部分相干月牙形光束在非Kolmogorov谱中的漂移. 激光技术, 2019, 43(4): 579-584. doi: 10.7510/jgjs.issn.1001-3806.2019.04.025
    [2] 高金全周正兰徐华锋吴彬屈军 . 部分相干Airy涡旋光束在非Kolmogorov谱中的模态强度. 激光技术, 2021, 45(4): 522-529. doi: 10.7510/jgjs.issn.1001-3806.2021.04.018
    [3] 杨盛凯王晓艳赵亮徐勇根 . 反常涡旋光束在各向异性大气湍流中的漂移. 激光技术, 2021, 45(2): 252-258. doi: 10.7510/jgjs.issn.1001-3806.2021.02.022
    [4] 赵琦郝红宇樊红英李建欣蒋泽伟肖星 . 部分相干cosh-Gaussian光束通过大气湍流后的聚焦特性. 激光技术, 2016, 40(5): 750-755. doi: 10.7510/jgjs.issn.1001-3806.2016.05.028
    [5] 杨军王慧章曦 . 大气湍流对部分相干激光瑞利区间影响的研究. 激光技术, 2016, 40(3): 456-460. doi: 10.7510/jgjs.issn.1001-3806.2016.03.033
    [6] 姜楠李晓英牛春晖刘鑫 . 大气湍流对激光空间传输特性影响的实验研究. 激光技术, 2022, 46(5): 708-712. doi: 10.7510/jgjs.issn.1001-3806.2022.05.022
    [7] 汤明玥李宾中 . 双曲余弦高斯光束在非Kolmogorov湍流中的湍流距离. 激光技术, 2015, 39(4): 581-584. doi: 10.7510/jgjs.issn.1001-3806.2015.04.034
    [8] 闫顺生李海花 . 利用喇曼-米方法确定激光雷达几何因子. 激光技术, 2013, 37(4): 511-514. doi: 10.7510/jgjs.issn.1001-3806.2013.04.021
    [9] 陈晓文魏小琴汤明玥邓涵凌 . 空心光束在非Kolmogorov湍流传输路径上的区域分割. 激光技术, 2021, 45(3): 307-312. doi: 10.7510/jgjs.issn.1001-3806.2021.03.007
    [10] 刘兵王巨胜杨泽后李晓锋樊冬任鹏李斌罗雄冯力天 . 基于非视线红外激光大气散射通信技术研究. 激光技术, 2014, 38(6): 854-858. doi: 10.7510/jgjs.issn.1001-3806.2014.06.028
    [11] 赵琦樊红英李轶国蒋泽伟胡绍云赖庚辛黄燕琳耿旭 . 大能量中空光束大气传输的仿真与实验比对研究. 激光技术, 2014, 38(4): 542-545. doi: 10.7510/jgjs.issn.1001-3806.2014.04.021
    [12] 刘玉丽 . 探测边界层大气温度的转动喇曼激光雷达. 激光技术, 2018, 42(4): 541-544. doi: 10.7510/jgjs.issn.1001-3806.2018.04.020
    [13] 刘琳琳杨杰黄见苑克娥尹凯欣胡顺星 . 激光雷达观测淮南大气SO2和NO2浓度廓线实例分析. 激光技术, 2019, 43(3): 353-358. doi: 10.7510/jgjs.issn.1001-3806.2019.03.012
    [14] 石玉立杨丰恺曹念文 . MPL反演南京北郊气溶胶光学厚度准确度的研究. 激光技术, 2015, 39(3): 372-376. doi: 10.7510/jgjs.issn.1001-3806.2015.03.020
    [15] 钱天陆健唐懋张冲张宏超 . 飞秒激光致双液滴光学击穿和等离子体分布研究. 激光技术, 2023, 47(2): 193-199. doi: 10.7510/jgjs.issn.1001-3806.2023.02.006
    [16] 王玉诏 . 一种用于激光雷达信号的自适应分段平滑算法. 激光技术, 2014, 38(5): 599-602. doi: 10.7510/jgjs.issn.1001-3806.2014.05.005
    [17] 杨建清罗积军徐军孙琦云王婷 . 基于雨滴谱分布数据库的近红外辐射衰减研究. 激光技术, 2018, 42(2): 161-165. doi: 10.7510/jgjs.issn.1001-3806.2018.02.004
    [18] 陈莉英姜洪波沈利沣赵志刚 . 脉冲腔衰荡技术探测气溶胶消光系数的研究. 激光技术, 2016, 40(2): 241-244. doi: 10.7510/jgjs.issn.1001-3806.2016.02.019
    [19] 刘秋武陈亚峰王杰王晓宾曹开法黄见胡顺星 . 差分吸收NO2激光雷达光源的设计与实现. 激光技术, 2018, 42(4): 433-439. doi: 10.7510/jgjs.issn.1001-3806.2018.04.001
    [20] 刘杰辉李鑫 . 基于ZEMAX二氧化硫荧光采集光路的设计仿真. 激光技术, 2020, 44(2): 221-225. doi: 10.7510/jgjs.issn.1001-3806.2020.02.015
  • 加载中
图(6)
计量
  • 文章访问数:  6035
  • HTML全文浏览量:  4752
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 录用日期:  2018-12-06
  • 刊出日期:  2019-11-25

EEMGSM光束在各向异性湍流中的光束质量因子研究

    通讯作者: 屈军, qujun70@ahnu.edu.cn
    作者简介: 束杰(1992-), 男, 硕士研究生, 现主要从事激光传输的研究
  • 安徽师范大学 物理与电子信息学院, 芜湖 241002
基金项目:  中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室开放基金资助项目 SKLST201608国家自然科学基金资助项目 11374015

摘要: 为了探究矢量椭圆多高斯-谢尔模(EEMGSM)光束的传输特性, 基于广义惠更斯-菲涅耳原理和维格纳分布函数的二阶矩理论, 理论推导了EEMGSM光束在各向异性湍流中传输的质量因子解析表达式。通过数值计算和分析, 探究了初始偏振度、初始相干度、腰宽、波长和湍流结构常数等与质量因子的变化规律。结果表明, EEMGSM光束的质量因子随着阶数、波长和腰宽的增大而减小; 随着初始相干度和湍流结构常数的减小而减小; 在相同条件下, 具有大初始偏振度的EEMGSM光束的光束质量受各向异性的影响小于具有小初始偏振度的EEMGSM光束的光束质量; 且在相同条件下, EEMGSM光束的质量因子比标量椭圆高斯-谢尔模(EGSM)光束小, 即EEMGSM光束具有缓解各向异性湍流影响的优点。所得结论对于自由空间光通信的研究具有一定的理论参考价值。

English Abstract

    • 近年来,激光在大气湍流中的传输特性得到广泛研究[1-8]。实验表明,部分相干光在大气传输中的表现优于完全相干光,很多学者对部分相干光束在自由空间和各向同性介质中传输进行了深入研究[1-2]。自从GORI等人[3]提出了构建具有特殊关联空间结构的部分相干光束的充分条件以来, 一系列具有特殊关联空间结构的部分相干光束的理论模型相继被提出, 并且在实验上产生,如多高斯-谢尔模型(multi-Gaussian-Schell model, MGSM)光束[4]、拉盖尔-高斯-谢尔模型(Laguerre-Gaussian-Schell model, LGSM)光束[5]和贝塞尔-高斯-谢尔模型(Bessel-Gaussian-Schell model, BGSM)光束[6]。WANG等人[7]在2014年提出了广义多高斯-谢尔模型(generalized multi-Gaussian-Schell model, GMGSM)光束,其中的一类远场光强为空心分布,另外一类远场光强呈平顶分布。KOROTKOVA[4]等人对MGSM光束在线性各向同性随机介质中的传输特性进行了详细研究, 发现MGSM光束的远场平顶分布在随机介质中可保持一段距离。YUAN等人[8]研究了MGSM光束在大气湍流中传输时的闪烁因子, 得出的结论是当光束的求和因子较大时, MGSM光束的闪烁因子比高斯-谢尔模(Gaussian-Shell model, GSM)光束的低。在相干和偏振的统一理论形成后,KOROTKOVA等人[9-11]将标量GSM光束扩展到电磁领域,对电磁高斯-谢尔模(electromagnetic Gaussian-Shell model, EGSM)光束进行了详细的研究。研究发现在适当的条件下,EGSM光束与标量GSM光束相比,光束光强闪烁的程度有所降低,这使得EGSM光束在自由空间光通信应用方面更有优势。

      大气是一种随机的非均匀介质,汉根在1839年首次从实验中发现了湍流的起源。1883年,雷诺通过实验分析了层流到湍流的转变条件[12], 并在1895年提出湍流粘性力的概念。到了20世纪上半叶,KAMAN[13]和TAYLOR[14]给出了湍流的定义:湍流是流体和气体中出现的一种无规则流动现象,当流体流过固体边界或相固流体相互流过时会产生湍流。KOLMOGOROV[15]和OBUKHOV[16]在1941年建立了表征湍流结构基本性质的定律,成为奠定现代湍流理论的基础。光束在大气中的传播大都是按照KOLMOGOROV的均匀、平稳和各向同性假设处理的,而实际的传播模型必须考虑湍流的各向异性、以及间歇性的影响。

      光束在大气湍流中传输时, 受大气折射率起伏的影响会产生漂移、扩展和闪烁等湍流效应[17]。而评价光束的光束质量的参量包括:聚焦光斑尺寸[18]、远场发散角[19]、斯特列尔比[20]、光束传输因子[20]、峭度参量[21]和桶中功率[22],光束传输质量因子同时考虑了腰宽和远场发散角的变化特点,能较好地反映出光束的传输特性。

      非偏振光源产生的光束与完全偏振光源产生的光束相比,在它们具有相同的强度分布和相同的源平面相干状态的情况下,非偏振光源产生的光束的闪烁强度有所降低[11]。而矢量椭圆类多高斯-谢尔模光束目前还有待深入研究,鉴于此,本文中以矢量椭圆多高斯-谢尔模(electromagnetic elliptic multi-Gaussian-Schell model, EEMGSM)光束为例,基于拓展惠更斯-菲涅耳原理和维格纳分布函数的二阶矩理论,理论推导了EEMGSM光束在各向异性湍流中传输质量因子解析表达式,以探究EEMGSM光束在各项异性湍流中的传输特性。

    • 矢量部分相干光在源平面上可以用2×2的交叉谱密度矩阵来表示[23]

      $ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{W}}_0}\left( {{{\mathit{\boldsymbol{\rho '}}}_1},{{\rho '}_2};\omega } \right) \equiv }\\ {\left[ {\begin{array}{*{20}{l}} {{W_{xx,0}}\left( {{{\mathit{\boldsymbol{\rho '}}}_1},{{\mathit{\boldsymbol{\rho '}}}_2};\omega } \right)}&{{W_{xy,0}}\left( {{{\mathit{\boldsymbol{\rho '}}}_1},{{\mathit{\boldsymbol{\rho '}}}_2};\omega } \right)}\\ {{W_{yx,0}}\left( {{{\mathit{\boldsymbol{\rho '}}}_1},{{\mathit{\boldsymbol{\rho '}}}_2};\omega } \right)}&{{W_{yy,0}}\left( {{{\mathit{\boldsymbol{\rho '}}}_1},{{\mathit{\boldsymbol{\rho '}}}_2};\omega } \right)} \end{array}} \right]} \end{array} $

      (1)

      式中,ρ1, ρ2表示在源平面上任意两点的位置矢量,ω为角频率。

      矢量椭圆多高斯-谢尔模型光束在z=0平面处的交叉谱密度矩阵可以表示为:

      $ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{W}}_{\alpha \beta }}\left( {{{\mathit{\boldsymbol{\rho '}}}_1},{{\mathit{\boldsymbol{\rho '}}}_2};0} \right) = {A_\alpha }{A_\beta }{B_{\alpha \beta }}\frac{1}{{{C_0}}}\sum\limits_{n = 1}^n {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]\frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}} \times }\\ {\exp \left[ { - \frac{{{{\left( {{{\mathit{\boldsymbol{\rho '}}}_1} - {{\mathit{\boldsymbol{\rho '}}}_2}} \right)}^2}}}{{2n\delta _{\alpha \beta }^2}}} \right]\exp \left( { - \frac{{\mathit{\boldsymbol{\rho '}}_1^2}}{{4\sigma _\alpha ^2}} - \frac{{\mathit{\boldsymbol{\rho '}}_2^2}}{{4\sigma _\beta ^2}}} \right),}\\ {\left( {\alpha = x,y;\beta = x,y} \right)} \end{array} $

      (2)

      式中, AαAβ为常数,与位置无关,σασβ表示沿着xy方向上的谱密度均方根宽度,δαβ表示空间相干长度,n为光束阶数(n=1, …, N),归一化因子。其中参量Bαβ满足以下条件:

      $ \left\{ \begin{array}{l} {B_{\alpha \beta }} \equiv 1,\left( {\alpha = \beta } \right)\\ {B_{\alpha \beta }} \le 1,\left( {\alpha \ne \beta } \right)\\ {B_{\alpha \beta }} = {B_{\beta \alpha }}^ * \end{array} \right. $

      (3)

      式中,*表示复共轭。矢量椭圆多高斯-谢尔模光束在大气湍流中传输时的交叉谱密度W(ρ, ρd; z)满足拓展的惠更斯-菲涅耳原理[24]

      $ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{W}}\left( {\mathit{\boldsymbol{\rho }},{\mathit{\boldsymbol{\rho }}_{\rm{d}}};z} \right) = {{\left( {\frac{k}{{2{\rm{ \mathsf{ π} }}z}}} \right)}^2}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\mathit{\boldsymbol{W}}\left( {\mathit{\boldsymbol{\rho '}},{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}};0} \right)} } } } \times }\\ {\exp \left[ {\frac{{{\rm{i}}k}}{z}\left( {\mathit{\boldsymbol{\rho }} - \mathit{\boldsymbol{\rho '}}} \right) \cdot \left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} - {{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}}} \right) - } \right.}\\ {\left. {\mathit{\boldsymbol{H}}\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}},{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}};z} \right)} \right]{{\rm{d}}^2}\mathit{\boldsymbol{\rho '}}{{\rm{d}}^2}{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}}} \end{array} $

      (4)

      式中,波数k=2π/λλ为光束波长。上式中用到的和差矢量公式如下:

      $ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{\rho '}} = \frac{{{{\mathit{\boldsymbol{\rho '}}}_1} + {{\mathit{\boldsymbol{\rho '}}}_2}}}{2},{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}} = {{\mathit{\boldsymbol{\rho '}}}_1} - {{\mathit{\boldsymbol{\rho '}}}_2},}\\ {\mathit{\boldsymbol{\rho }} = \frac{{{\mathit{\boldsymbol{\rho }}_1} + {\mathit{\boldsymbol{\rho }}_2}}}{2},{\mathit{\boldsymbol{\rho }}_{\rm{d}}} = {\mathit{\boldsymbol{\rho }}_1} - {\mathit{\boldsymbol{\rho }}_2}} \end{array} $

      (5)

      式中,ρ1ρ2为接收面上的任意两点位置矢量,即:

      $ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{W}}_{\alpha \beta }}\left( {{{\mathit{\boldsymbol{\rho '}}}_1},{{\mathit{\boldsymbol{\rho '}}}_2};0} \right) = {\mathit{\boldsymbol{W}}_{\alpha \beta }}\left( {\mathit{\boldsymbol{\rho '}},{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}};0} \right) = }\\ {{\mathit{\boldsymbol{W}}_{\alpha \beta }}\left( {\mathit{\boldsymbol{\rho '}} + \frac{{{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}}}}{2},\mathit{\boldsymbol{\rho '}} - \frac{{{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}}}}{2};0} \right)} \end{array} $

      (6)

      其中由大气湍流引起的[24-26]

      $ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{H}}\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}},{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}};z} \right) = 4{{\rm{ \mathsf{ π} }}^2}{k^2}z\int_0^1 {{\rm{d}}\xi \int_0^\infty {\left[ {1 - } \right.} } }\\ {\left. {{{\rm{J}}_0}\left( {\kappa \left| {{{\mathit{\boldsymbol{\rho '}}}_{\rm{d}}}\xi + \left( {1 - \xi } \right){\mathit{\boldsymbol{\rho }}_{\rm{d}}}} \right|} \right)} \right]{\mathit{\Phi }_n}\left( \kappa \right)\kappa {\rm{d}}\kappa } \end{array} $

      (7)

      式中,ξ表示一个积分项,取值范围0 < ξ < 1。另外,功率谱函数为:

      $ \begin{array}{*{20}{c}} {T = \int_0^\infty {{\rm{d}}\kappa '{{\kappa '}^3}{{\mathit{\Phi '}}_n}} \left( {\kappa '} \right)/\left( {{\mu _x}{\mu _y}} \right) = }\\ {\frac{{{\mu _z}A\left( v \right)}}{{2\left( {v - 2} \right)}}\tilde C_n^2\left[ {\beta \kappa _m^{2 - v}\exp \left( {\frac{{\kappa _0^2}}{{\kappa _m^2}}} \right) \times } \right.}\\ {\left. {{{\rm{\Gamma }}_1}\left( {2 - \frac{v}{2},\frac{{\kappa _0^2}}{{\kappa _m^2}}} \right) - 2\kappa _0^{4 - v}} \right]} \end{array} $

      (8)

      式中,A(υ)=Γ(υ-1)cos(υπ/2)/(4π2),β=2κ02-2κm2+υκm2υ为广义指数参量,κ0=2π/L0κm=c(υ)/l0L0为外尺度,l0为内尺度,$c\left( \upsilon \right) = {\left[ {\Gamma \left( {5 - \frac{\upsilon }{2}} \right)A\left( \upsilon \right)\frac{2}{3}{\rm{ \mathsf{ π} }}} \right]^{\frac{1}{{\upsilon - 5}}}}$,J0为零阶贝塞尔函数,Φn′表示折射率波动的1维功率谱,κ′为2维空间频率大小,Γ( )为伽马函数,Γ1( )是不完全伽马函数,$\tilde C_n^2$为大气湍流结构常数,μx, μy表示两个横方向上的各向异性因子,μz是传播方向的各向异性因子。

      由(5)式~(7)式且$\mathit{\boldsymbol{\rho }}\mathit{'} = \mathit{\boldsymbol{\rho }}\mathit{''}, {\mathit{\boldsymbol{\rho }}_{\rm{d}}}\mathit{'} = {\mathit{\boldsymbol{\rho }}_{\rm{d}}} + \frac{z}{k}{\kappa _{\rm{d}}}$,可将(4)式化简为[24]:

      $ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{W}}\left( {\mathit{\boldsymbol{\rho }},{\mathit{\boldsymbol{\rho }}_{\rm{d}}};z} \right) = {{\left( {\frac{1}{{2{\rm{ \mathsf{ π} }}}}} \right)}^2}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\mathit{\boldsymbol{W}}\left( {\mathit{\boldsymbol{\rho ''}},{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + \frac{z}{k}{\kappa _{\rm{d}}};0} \right)} } } } \times }\\ {\exp \left[ { - {\rm{i}}\mathit{\boldsymbol{\rho }}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}} + {\rm{i}}\mathit{\boldsymbol{\rho ''}}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}} - } \right.}\\ {\left. {\mathit{\boldsymbol{H}}\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}},{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + \frac{z}{k}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}};z} \right)} \right]{\rm{d}}\mathit{\boldsymbol{\rho ''}}{{\rm{d}}^2}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}} \end{array} $

      (9)

      式中,κd≡(κd, x κd, y)为空间频率域的位置向量,其中矢量椭圆多高斯-谢尔模光束在源平面的交叉谱密度函数为:

      $ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{W}}\left( {\mathit{\boldsymbol{\rho ''}},{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + \frac{z}{k}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}};0} \right) = {A_\alpha }{A_\beta }{B_{a\beta }}\frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]} \frac{{{{( - 1)}^{n - 1}}}}{n} \times }\\ {\exp \left\{ { - \frac{{{{\left[ {\mathit{\boldsymbol{\rho ''}} + \frac{1}{2}\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k} \right)} \right]}^2}}}{{4\sigma _\alpha ^2}} - } \right.}\\ {\left. {\frac{{{{\left[ {\mathit{\boldsymbol{\rho ''}} + \frac{1}{2}\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k} \right)} \right]}^2}}}{{4\sigma _\beta ^2}} - \frac{{{{\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k} \right)}^2}}}{{2n{\delta _{\alpha \beta }}^2}}} \right\} = }\\ {A_x^2\frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]} \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}\exp \left[ { - \frac{1}{{4\sigma _x^2}}{{\left( {\mathit{\boldsymbol{\rho ''}} + \frac{{{{\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k} \right)}^2}}}{2}} \right)}^2} - } \right.}\\ {\left. {\frac{1}{{4\sigma _x^2}}{{\left( {\mathit{\boldsymbol{\rho ''}} + \frac{{{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k}}{2}} \right)}^2} - \frac{{{{\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k} \right)}^2}}}{{2n{\delta _{xx}}^2}}} \right] + }\\ {A_y^2\frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]} \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}\exp \left[ { - \frac{1}{{4\sigma _y^2}}{{\left( {\mathit{\boldsymbol{\rho ''}} + \frac{{{{\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k} \right)}^2}}}{2}} \right)}^2} - } \right.}\\ {\left. {\frac{1}{{4\sigma _y^2}}{{\left( {\mathit{\boldsymbol{\rho ''}} + \frac{{{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k}}{2}} \right)}^2} - \frac{{{{\left( {{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + z{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}/k} \right)}^2}}}{{2n{\delta _{yy}}^2}}} \right]} \end{array} $

      (10)

      根据维格纳分布函数定义[24]:

      $ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{h}}\left( {\mathit{\boldsymbol{\rho }},\mathit{\boldsymbol{\theta }},z} \right) = {{\left( {\frac{k}{{2{\rm{ \mathsf{ π} }}}}} \right)}^2}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\mathit{\boldsymbol{W}}\left( {\mathit{\boldsymbol{\rho }},{\mathit{\boldsymbol{\rho }}_{\rm{d}}};z} \right)} } \times }\\ {\exp \left( { - {\rm{i}}k\mathit{\boldsymbol{\theta }} \cdot {\mathit{\boldsymbol{\rho }}_{\rm{d}}}} \right){{\rm{d}}^2}{\mathit{\boldsymbol{\rho }}_{\rm{d}}}} \end{array} $

      (11)

      式中,θ≡(θx, θy)表示这个矢量沿z方向的角度,xy分别是沿x轴和y轴方向的波矢分量。那么可得:

      $ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{h}}\left( {\mathit{\boldsymbol{\rho }},\mathit{\boldsymbol{\theta }},z} \right) = {\mathit{\boldsymbol{h}}_{xx}}\left( {\mathit{\boldsymbol{\rho }},\mathit{\boldsymbol{\theta }},z} \right) + {\mathit{\boldsymbol{h}}_{yy}}\left( {\mathit{\boldsymbol{\rho }},\mathit{\boldsymbol{\theta }},z} \right) = }\\ {A_x^2\frac{{\sigma _x^2{k^2}}}{{8{{\rm{ \mathsf{ π} }}^3}}}\frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]} \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\exp } } } } \left[ { - {a_{xx}}\mathit{\boldsymbol{\kappa }}_{\rm{d}}^2 - } \right.}\\ {\frac{{2z}}{k}{b_{xx}}{\mathit{\boldsymbol{\rho }}_{\rm{d}}}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}} - {\rm{i}}\mathit{\boldsymbol{\rho }}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}} - \left( {{b_{xx}} + \frac{{{{\rm{ \mathsf{ π} }}^2}{k^2}zT}}{{2{\mu _x}}}} \right) \times }\\ {\left. {\mathit{\boldsymbol{\rho }}_{\rm{d}}^2 - {\rm{i}}k\mathit{\boldsymbol{\theta }} \cdot {\mathit{\boldsymbol{\rho }}_{\rm{d}}}} \right]{{\rm{d}}^2}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}{{\rm{d}}^2}{\mathit{\boldsymbol{\rho }}_{\rm{d}}} + }\\ {A_y^2\frac{{\sigma _y^2{k^2}}}{{8{{\rm{ \mathsf{ π} }}^3}}}\frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]} \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\exp } } } } \left[ { - {a_{yy}}\mathit{\boldsymbol{\kappa }}_{\rm{d}}^2 - } \right.}\\ {\frac{{2z}}{k}{b_{yy}}{\mathit{\boldsymbol{\rho }}_{\rm{d}}}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}} - {\rm{i}}\mathit{\boldsymbol{\rho }}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}} - }\\ {\left. {\left( {{b_{yy}} + \frac{{{{\rm{ \mathsf{ π} }}^2}{k^2}zT}}{{2{\mu _y}}}} \right)\mathit{\boldsymbol{\rho }}_{\rm{d}}^2 - {\rm{i}}k\mathit{\boldsymbol{\theta }} \cdot {\mathit{\boldsymbol{\rho }}_{\rm{d}}}} \right]{{\rm{d}}^2}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}{{\rm{d}}^2}{\mathit{\boldsymbol{\rho }}_{\rm{d}}}} \end{array} $

      (12)

      其中设置的参量有:

      $ \begin{array}{*{20}{c}} {\left\{ {\begin{array}{*{20}{l}} {{a_{\alpha \alpha }} = \left( {\frac{1}{{8\sigma _\alpha ^2}} + \frac{1}{{2n\delta _{\alpha \alpha }^2}} + \frac{{{{\rm{ \mathsf{ π} }}^2}{k^2}zT}}{{3{\mu _\alpha }}}} \right)\frac{{{z^2}}}{{{k^2}}} + \frac{{\sigma _\alpha ^2}}{2}}\\ {{b_{\alpha \alpha }} = \frac{1}{{8\sigma _\alpha ^2}} + \frac{1}{{2n\delta _{\alpha \alpha }^2}} + \frac{{{{\rm{ \mathsf{ π} }}^2}{k^2}zT}}{{2{\mu _\alpha }}}} \end{array},} \right.}\\ {\left( {\alpha = x,y} \right)} \end{array} $

      (13)

      利用的积分公式[24]

      $ \int_{ - \infty }^\infty {\exp } \left( { - {s^2}{x^2} \pm qx} \right){\rm{d}}x = \frac{{\sqrt {\rm{ \mathsf{ π} }} }}{s}\exp \left( {\frac{{{q^2}}}{{4{s^2}}}} \right) $

      (14)

      通过数值计算,得出矢量椭圆多高斯-谢尔模光束的传输质量因子[24]

      $ \begin{array}{*{20}{c}} {{M^2}\left( z \right) = k{{\left( {\left\langle {{\mathit{\boldsymbol{\rho }}^2}} \right\rangle \left\langle {{\mathit{\boldsymbol{\theta }}^2}} \right\rangle - {{\left\langle {\mathit{\boldsymbol{\rho }} \cdot \mathit{\boldsymbol{\theta }}} \right\rangle }^2}} \right)}^{\frac{1}{2}}} = }\\ {k\left[ {\left( {\left\langle {{x^2}} \right\rangle + \left\langle {{y^2}} \right\rangle } \right)\left( {\left\langle {\theta _x^2} \right\rangle + \left\langle {\theta _y^2} \right\rangle } \right)} \right. - }\\ {{{\left. {{{\left( {\left\langle {x{\theta _x}} \right\rangle + \left\langle {y{\theta _y}} \right\rangle } \right)}^2}} \right]}^{\frac{1}{2}}}} \end{array} $

      (15)

      光束的n1+n2+m1+m2阶维格纳分布函数定义为[24]

      $ \begin{array}{*{20}{c}} {\left\langle {{x^{{n_1}}}{y^{{n_2}}}\theta _x^{{m_1}}\theta _y^{{m_2}}} \right\rangle = }\\ {\frac{1}{I}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{x^{{n_1}}}} } {y^{{n_2}}}\theta _x^{{m_1}}\theta _y^{{m_2}}\mathit{\boldsymbol{h}}\left( {\mathit{\boldsymbol{\rho }},\mathit{\boldsymbol{\theta }},z} \right){{\rm{d}}^2}\mathit{\boldsymbol{\rho }}{{\rm{d}}^2}\mathit{\boldsymbol{\theta }}} \end{array} $

      (16)

      式中,光束的强度分布可以表示为:

      $ I = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\mathit{\boldsymbol{h}}\left( {\mathit{\boldsymbol{\rho }},\mathit{\boldsymbol{\theta }},z} \right){{\rm{d}}^2}\mathit{\boldsymbol{\rho }}{{\rm{d}}^2}\mathit{\boldsymbol{\theta }}} } } } $

      (17)

      由(7)式~(17)式可得:

      $ I = 2{\rm{ \mathsf{ π} }}\left( {A_x^2\sigma _x^2 + A_y^2\sigma _y^2} \right) $

      (18)

      $ \begin{array}{*{20}{c}} {\left\langle {{\mathit{\boldsymbol{\rho }}^2}} \right\rangle = \frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]\frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}\frac{{8{\rm{ \mathsf{ π} }}}}{I}} \times }\\ {\left( {A_x^2{a_{xx}}\sigma _x^2 + A_y^2{a_{yy}}\sigma _y^2} \right)} \end{array} $

      (19)

      $ \begin{array}{*{20}{c}} {\left\langle {{\mathit{\boldsymbol{\theta }}^2}} \right\rangle = \frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]\frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}\frac{{2{\rm{ \mathsf{ π} }}}}{I}} \left[ {\sigma _x^2A_x^2 \times } \right.}\\ {\left. {\left( {\frac{4}{{{k^2}}}{b_{xx}} + \frac{{2{{\rm{ \mathsf{ π} }}^2}zT}}{{{\mu _x}}}} \right) + \sigma _y^2A_y^2\left( {\frac{4}{{{k^2}}}{b_{yy}} + \frac{{2{{\rm{ \mathsf{ π} }}^2}zT}}{{{\mu _y}}}} \right)} \right]} \end{array} $

      (20)

      $ \begin{array}{*{20}{c}} {\langle \mathit{\boldsymbol{\rho }} \cdot \mathit{\boldsymbol{\theta }}\rangle = \frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]} \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}\frac{{8{\rm{ \mathsf{ π} }}}}{I}\frac{z}{{{k^2}}} \times }\\ {\left( {{b_{xx}}\sigma _x^2A_x^2 + {b_{yy}}\sigma _y^2A_y^2} \right)} \end{array} $

      (21)

      那么可得:

      $ \begin{array}{*{20}{c}} {{M^2}\left( z \right) = k{{\left( {\left\langle {{\mathit{\boldsymbol{\rho }}^2}} \right\rangle \left\langle {{\mathit{\boldsymbol{\theta }}^2}} \right\rangle - {{\left\langle {\mathit{\boldsymbol{\rho }} \cdot \mathit{\boldsymbol{\theta }}} \right\rangle }^2}} \right)}^{\frac{1}{2}}} = }\\ {\frac{1}{{{C_0}}}\sum\limits_{n = 1}^N {\left[ {\begin{array}{*{20}{c}} N\\ n \end{array}} \right]} \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{n}k \times }\\ {\left\{ {\frac{{8{\rm{ \mathsf{ π} }}}}{I}\left( {A_x^2{a_{xx}}\sigma _x^2 + A_y^2{a_{yy}}\sigma _y^2} \right) \times } \right.}\\ {\frac{{2{\rm{ \mathsf{ π} }}}}{I}\left[ {\sigma _x^2A_x^2\left( {\frac{4}{{{k^2}}}{b_{xx}} + \frac{{2{{\rm{ \mathsf{ π} }}^2}zT}}{{{\mu _x}}}} \right) + \sigma _y^2A_y^2\left( {\frac{4}{{{k^2}}}{b_{yy}} + \frac{{2{{\rm{ \mathsf{ π} }}^2}zT}}{{{\mu _y}}}} \right)} \right] - }\\ {{{\left. {{{\left[ {\frac{{8{\rm{ \mathsf{ π} }}}}{I}\frac{z}{{{k^2}}}\left( {{b_{xx}}\sigma _x^2A_x^2 + {b_{yy}}\sigma _y^2A_y^2} \right)} \right]}^2}} \right\}}^{1/2}}} \end{array} $

      (22)
    • 基于所得EEMGSM光束的质量因子表达式,本文中具体分析了EEMGSM光束在各向异性湍流中传输时,其传输质量因子的演化规律。所选参量为:λ=632.8nm, Ay < Ax,初始偏振度P0=0.6,δxx=0.004m,δyy=0.01m,$\tilde C_n^2$=10-14m-2/3L0=1m,l0=0.01m。

      图 1a可以清楚地看出,自由空间中EEMGSM光束的质量因子的值随着其均方根束宽的值增大而增大,光束阶数越大,质量因子增加得越快。图 1b中表明, 随着初始相干度δxx值的增大,EEMGSM光束的质量因子的值将减小,光束阶数越小,质量因子减小得越快。图 1aσy=0.5σx图 1bδyy=0.5δxxσx=0.025m,σy=0.01m。

      Figure 1.  Dependence of the M2 factor of an EEMGSM beam in free space on the root mean square width σx of the spectral density along x direction and the initial coherence δxx of the x component of the field

      图 2中给出了EEMGSM光束的质量因子在不同初始相干度值时,随x, y方向初始腰宽比值的变化关系。可以看出, 当光束在x, y方向上的初始相干度取值相等时,初始腰宽比值在0.7附近的光束质量因子最小;当光束初始相干度在y方向上与x方向上的比值大于1时,光束质量因子在初始腰宽比值为1处附近最小;当光束初始相干度在y方向上与x方向上的比值小于1时,光束质量因子最小的点为初始腰宽比值趋近于零处。

      Figure 2.  Relationship between M2 factor of an EEMGSM beam and the initial beam-width ratio during anisotropic turbulent propagation

      图 3表示在不同初始偏振度值P0的情况下,EEMGSM光束在各向异性湍流中传输时归一化质量因子随距离的变换图像。从图 3可以看出,与光束在自由空间中的传输特性不同,其归一化的质量因子在各向异性湍流中传输时增大,这说明了EEMGSM光束在传输时受到湍流影响导致光束质量下降。在图 3a中,对于Ay>Ax的情况,具有小初始偏振度的EE-MGSM光束的光束质量受各向异性的影响小于具有大初始偏振度的EEMGSM光束或EMGSM光束,这表明与EMGSM光束相比,EEMGSM光束受各向异性湍流的影响较小。从图 3b可知,对于Ay < Ax的情况,随着初始偏振度P0的减小,归一化质量因子的值增加得越快,且标量EMGSM光束受各向异性湍流的影响小于EEMGSM光束。

      Figure 3.  The normalized M2 factor of an EEMGSM beam on propagation in turbulent anisotropy for different values of the initial degree of polarization

      图 4a图 4b分别表示不同初始相干度和不同初始均方根束宽,EEMGSM光束在各向异性湍流中传输的归一化质量因子变化情况。从图 4a中可以看出,随着初始相干度值的减小,归一化质量因子的值在传输时增大得越慢,这意味着具有小初始相干度的EE-MGSM光束受各向异性湍流的影响较小。由图 4a图 4b可知:EEMGSM光束在具有较大的初始均方根束宽和较小的初始相干度时受各向异性湍流的影响较小。

      Figure 4.  The normalized M2 factor of an EEMGSM beam on propagation in turbulent anisotropy

      图 5a反映了EEMGSM光束在各向异性湍流中传输时不同阶数与其归一化质量因子的变化关系,其中σx=σy=0.01m。可知随着阶数的增大,EEMGSM光束的归一化质量因子增大得越慢。从图 5b可以看出, 不同波长EEMGSM光束在各向异性湍流中传输的归一化质量因子变化情况,其中σx=σy=0.02m。另外,湍流参量也影响光束在各向异性湍流中归一化质量因子的演化特性。在图 5c中利用不同的结构常数的值来计算EEMGSM光束在各向异性湍流中传输的归一化质量因子。图 5d是折射率波动谱的幂函数对EEMGSM光束在各向异性湍流中传输时的影响,可以从图中了解到在折射率波动谱的幂函数取值范围内,EEMGSM光束的质量因子先增大后缓慢减小,且阶数越小,质量因子越小。

      Figure 5.  Changes of the normalized M2 factor of an EEMGSM beam with

      图 6可知, 各向异性湍流中传输的EEMGSM光束归一化质量因子与不同湍流内、外尺度变化关系。如图所示,归一化的质量因子随着湍流内尺度减小或湍流外尺度增大而增大得越快。

      Figure 6.  The normalized M2 factor of an EEMGSM beam on propagation in turbulent atmosphere

    • 基于拓展的惠更斯-菲涅耳原理和维格纳分布函数的二阶矩理论,推导了EEMGSM光束在各向异性湍流中传输质量因子的解析表达式,并进行相应的数值计算。结果表明:可以利用EEMGSM光束替代EEGSM光束以改善光束的传输特性,减小湍流对光束的影响。当光束横截面上两个方向的初始相干度值相等时,EEMGSM光束要比EMGSM光束具有较小的质量因子,此时EEMGSM光束比EMGSM光束更具有优势。当初始偏振度、初始腰宽、阶数、波长和内尺度增大时,EEMGSM光束的归一化质量因子减小;当初始相干度、结构常数和外尺度减小时,EEMGSM光束的归一化质量因子减小。对比相同条件下的EEMGSM光束与EMGSM光束和EEGSM光束,EEMGSM光束的在缓解湍流影响方面比EEGSM光束和EMGSM光束更具有优势。所得结论对于通信方面的研究可能有一定的参考意义。

参考文献 (26)

目录

    /

    返回文章
    返回