高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MOPA结构的1064nm单频光纤激光器

朱志坚 薛竣文 王玉珂 孙鲁 苏秉华

引用本文:
Citation:

基于MOPA结构的1064nm单频光纤激光器

    作者简介: 朱志坚(1992-), 男, 硕士研究生, 现主要从事光纤激光器的研究.
    通讯作者: 薛竣文, xuejunwen001@126.com
  • 基金项目:

    广东省省级科技计划资助项目 2016B090918099

  • 中图分类号: TN248.1

1064nm single-frequency fiber lasers based on MOPA structure

    Corresponding author: XUE Junwen, xuejunwen001@126.com ;
  • CLC number: TN248.1

  • 摘要: 为了抑制受激布里渊散射效应, 提高单频窄线宽种子源的放大功率, 采用主振荡功率放大器结构, 并对光纤长度、纤芯直径和抽运参量进行优化, 实现了42W的1064nm信号光输出。实验中, 一级放大采用914nm半导体激光器作为抽运源, 增益光纤芯径10μm, 长度8m;二级放大采用976nm半导体激光器作为抽运源, 增益光纤芯径20μm, 长度2.4m。在种子光功率40mW、一级放大的抽运功率6.8W、二级放大的抽运功率85W时, 得到了42W的1064nm信号光输出。结果表明, 光光转换效率约49.4%, 偏振消光比27.5dB; 输出信号光中心波长1064.5nm, 线宽约70MHz, 保持了种子光的单频特性。在42W连续输出时没有观察到受激布里渊散射, 继续增大抽运功率, 有望实现更高功率的放大。
  • Figure 1.  1064nm Yb-doped fiber laser based on MOPA structure

    Figure 2.  1064nm laser output power vs. the launched pump power for the pre-amplifier

    Figure 3.  1064nm laser output power vs. the launched pump power for the second amplifier

    Figure 4.  Single longtitude mode by F-P scanning interferometer

    Figure 5.  Spectrum of seed light and signal light

  • [1]

    WEI X Ch, OU P, ZHANG Ch X, et al. Single frequency single polarization narrow linewidth fiber laser and its amplification [J]. Laser Technology, 2009, 34(1):5-7(in Chinese).
    [2]

    YAO X Q, SUN W, WANG X B. Dual-wavelength single-frequency fiber laser based on ring filter [J]. Laser Technology, 2017, 41(1): 98-100(in Chinese).
    [3]

    HU J, ZHANG L, LIU H, et al. High-power single-frequency 1014.8nm Yb-doped fiber amplifier working at room temperature[J].Applied Optics, 2014, 53(22):4972-4977. doi: 10.1364/AO.53.004972
    [4]

    LIU X J, WEI G X, ZHOU B J, et al. 1120nm narrow linewidth ytterbium-doped fiber laser[J]. Laser Technology, 2016, 40(3):349-352(in Chinese).
    [5]

    CHEN M H. Research progress of high-power fiber lasers[J]. Laser and Infrared, 2007, 37(7):589-592(in Chinese).
    [6]

    ZHANG W N, LI C, FENG Zh M, et al. Short cavity single frequency fiber laser at 1080nm based on highly Yb3+-doped phosphate fiber[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100601(in Chinese).
    [7]

    SHI W, FU Sh J, FANG Q, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber[J]. Infrared and Laser Engineering, 2016, 45(10): 1003001(in Chinese). doi: 10.3788/IRLA201645.1003001
    [8]

    QIAN X D, LI Zh R, LIANG X. Synchronization control of MOPA excimer laser system [J].Laser Technology, 2015, 39(2): 233-236(in Chinese).
    [9]

    FUJITA E, MASHIKO Y, ASAYA S, et al. High power narrow-linewidth linearly-polarized 1610nm Er:Yb all-fiber MOPA[J]. Optics Express, 2016, 24(23):26255. doi: 10.1364/OE.24.026255
    [10]

    VARONA O, STEINKE M, NEUMANN J, et al. All-fiber, single-frequency, and single-mode Er3+:Yb3+, fiber amplifier at 1556nm core-pumped at 1018nm[J]. Optics Letters, 2018, 43(11):2632-2635. doi: 10.1364/OL.43.002632
    [11]

    FUJITA E, MASHIKO Y, ASAYA S, et al. High power narrow-linewidth linearly-polarized 1610nm Er:Yb all-fiber MOPA[J]. Optics Express, 2016, 24(23):26255. doi: 10.1364/OE.24.026255
    [12]

    GE X, YU J, LIU W, et al. High-power all-fiber 1.0/1.5μm dual-band pulsed MOPA source[J]. Chinese Optics Letters, 2018, 16(2):020010. doi: 10.3788/COL201816.020010
    [13]

    XUE J W, FANG Y J, AN H B, et al. The design of F-P scanning interferometer based on the STC singlechip [J]. Optics & Optoelectronic Technology, 2014, 12(5):8-12(in Chinese).
    [14]

    LI X, HANG Zh G, YING L, et al. Research on power alignment technology of large mode field double cladding fiber fusion[J]. Laser Technology, 2017, 41 (3): 337-341(in Chinese).
    [15]

    YAMG L, ZHENG J J, HAO L Y, et al. Influence of signal spectral width characteristic on SBS threshold of single frequency fiber amplifier[J]. Chinese Journal of Lasers, 2017, 44(9): 901009(in Ch-inese). doi: 10.3788/CJL201744.0901009
    [16]

    DRAGIC P D. Narrow linewidth fiber laser systems via Brillouin-tailored optical fiber[J]. Proceedings of the SPIE, 2016, 7323:73230W.
    [17]

    ZHOU Z Ch, WANG X L, SU R T, et al. Theoretical study on SBS effect suppression of gradient doping gain fibers[J]. Laser & Opto-electronics Progress, 2016, 53(7): 70604(in Chinese).
    [18]

    SINCORE A, BODNAR N, BRADFORD J, et al. SBS threshold dependence on pulse duration in a 2053nm single-mode fiber amplifier[J]. Journal of Lightwave Technology, 2017, 35(18):4000-4003. doi: 10.1109/JLT.2017.2729508
    [19]

    WANG X, YANG Y, LIU M, et al. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers[J]. Applied Optics, 2016, 55(23):6475-6479. doi: 10.1364/AO.55.006475
    [20]

    XUE J W, LI K, FANG Y J, et al. High efficiency single frequency ring laser based on magnetic optical rotation glass[J]. Optoelectro-nic Technology, 2016, 36(2):122-125(in Chinese).
  • [1] 何幸锴侯辉冯力天伍波沈琪浩侯天晋兰戈周鼎富 . 1550nm单频脉冲光纤激光放大器实验研究. 激光技术, 2011, 35(2): 145-147,151. doi: 10.3969/j.issn.1001-3806.2011.02.001
    [2] 杨春波冷进勇陆启生 . 掺Yb3+双包层单频光纤放大器中SBS的理论分析. 激光技术, 2011, 35(1): 117-121. doi: 10.3969/j.issn.1001-3806.2011.01.032
    [3] 李慧王志敏张丰丰王明强李家佳崔大复彭钦军许祖彦 . 全固态单频激光技术. 激光技术, 2016, 40(1): 141-147. doi: 10.7510/jgjs.issn.1001-3806.2016.01.031
    [4] 张亮王智勇张辉尧舜曹银花左铁钏 . 基于受激布里渊散射的调Q光纤激光器研究. 激光技术, 2008, 32(1): 44-46,49.
    [5] 李尚义张盛伏 . 一种自稳频大功率单频He-Ne激光器的功率估算. 激光技术, 1998, 22(6): 357-361.
    [6] 赵严高春清曹一磊李家泽魏光辉 . LD抽运1319nm单频激光器的调谐和噪声抑制研究. 激光技术, 2004, 28(5): 466-468.
    [7] 李尚义 . 二种单频外腔式He-Ne激光器的自稳频原理再分析. 激光技术, 1995, 19(1): 1-5.
    [8] 张聪余文峰夏珉杨春华 . 光纤受激布里渊散射的光信号特性分析. 激光技术, 2016, 40(3): 363-366. doi: 10.7510/jgjs.issn.1001-3806.2016.03.013
    [9] 周雷宁继平陈王争韩群张伟毅王俊涛 . Er/Yb共掺光纤脉冲放大器中的受激布里渊散射. 激光技术, 2009, 33(5): 482-485. doi: 10.3969/j.issn.1001-3806.2009.05.010
    [10] 何幸锴冯力天沈琪皓伍波兰戈周鼎富 . 单频脉冲光纤放大器中的SBS效应实验研究. 激光技术, 2012, 36(2): 191-193,197. doi: 10.3969/j.issn.1001-3806.2012.02.011
    [11] 蔺玉珂卢静李建平 . 单环掺铒光纤激光器光延迟反馈的混沌控制. 激光技术, 2011, 35(3): 319-321,325. doi: 10.3969/j.issn.1001-3806.2011.03.009
    [12] 张金戈闫平蒋秋洁巩马理 . 自由运转的掺镱光纤激光器激射波长的研究. 激光技术, 2008, 32(3): 234-236,247.
    [13] 哈斯乌力吉吕志伟何伟明王双义 . 受激布里渊散射的新介质. 激光技术, 2005, 29(3): 311-314.
    [14] 董永康吕志伟吕月兰何伟明 . 布里渊光纤环形激光器及其应用. 激光技术, 2004, 28(5): 498-502.
    [15] 戴明柳强闫平巩马理 . 可调谐Yb光纤激光器LBO倍频特性理论研究. 激光技术, 2006, 30(3): 323-326.
    [16] 刘宗华郑义 . 掺镱光子晶体光纤激光器谐振腔的实验研究. 激光技术, 2014, 38(1): 105-108. doi: 10.7510/jgjs.issn.1001-3806.2014.01.023
    [17] 詹仪 . 掺Yb3+双包层光纤激光器的自脉冲行为分析. 激光技术, 2009, 33(6): 651-653. doi: 10.3969/j.issn.1001-3806.2009.06.026
    [18] 欧攀贾豫东林志立刘磊 . 基于饱和吸收镜的被动锁模掺铒光纤激光器. 激光技术, 2011, 35(1): 58-60. doi: 10.3969/j.issn.1001-3806.2011.01.017
    [19] 张祖兴伍剑徐坤林金桐 . 被动锁模光纤激光器的多模式输出. 激光技术, 2009, 33(5): 548-550,554. doi: 10.3969/j.issn.1001-3806.2009.05.020
    [20] 秦祖军周晓军李请 . 一种可用于太阳能抽运光纤激光器的聚光器. 激光技术, 2007, 31(2): 179-181,184.
  • 加载中
图(5)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  197
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-30
  • 录用日期:  2019-01-08
  • 刊出日期:  2019-11-25

基于MOPA结构的1064nm单频光纤激光器

    通讯作者: 薛竣文, xuejunwen001@126.com
    作者简介: 朱志坚(1992-), 男, 硕士研究生, 现主要从事光纤激光器的研究
  • 1. 北京理工大学 光电学院, 北京 100081
  • 2. 北京理工大学珠海学院 光电成像技术与系统教育部重点实验室(珠海分室), 珠海 519088
基金项目:  广东省省级科技计划资助项目 2016B090918099

摘要: 为了抑制受激布里渊散射效应, 提高单频窄线宽种子源的放大功率, 采用主振荡功率放大器结构, 并对光纤长度、纤芯直径和抽运参量进行优化, 实现了42W的1064nm信号光输出。实验中, 一级放大采用914nm半导体激光器作为抽运源, 增益光纤芯径10μm, 长度8m;二级放大采用976nm半导体激光器作为抽运源, 增益光纤芯径20μm, 长度2.4m。在种子光功率40mW、一级放大的抽运功率6.8W、二级放大的抽运功率85W时, 得到了42W的1064nm信号光输出。结果表明, 光光转换效率约49.4%, 偏振消光比27.5dB; 输出信号光中心波长1064.5nm, 线宽约70MHz, 保持了种子光的单频特性。在42W连续输出时没有观察到受激布里渊散射, 继续增大抽运功率, 有望实现更高功率的放大。

English Abstract

    • 光纤激光器具有体积小、易维护、光束质量高和免调节的优点,广泛应用于光纤通信、汽车制造、雕刻、打标和激光切割等领域[1-4]。作为光纤激光技术领域一个重要的分支,单频激光器除了上述优点外,还具有超窄光谱线宽、超长相干长度等特征,在引力波探测、相干激光雷达和非线性频率转换等领域有着重要的应用前景。单频光纤激光器一般采用线性短腔和环形腔结构[5]。2012年,华南理工大学的ZHANG等人报道了一种输出波长为1080nm的分布布喇格反射(distributed Bragg reflection,DBR)短腔单频光纤激光器,最大功率达到90mW[6]。2016年,天津大学的SHI等人基于石英玻璃光纤的光纤激光系统,实现了930nm到2μm波段的单纵模运转[7]。光纤线性短腔和环形腔在一定程度上受谐振腔长度、光纤芯径、损伤阈值和调模现象等因素影响,难以实现高功率稳定输出。主振荡功率放大器(master oscillator power amplifier,MOPA)结构具有将窄线宽的小功率种子光进行放大的作用,输出光特性可由种子光进行控制,可实现单频窄线宽激光的高功率稳定输出[8-9]。此外,全光纤MOPA结构可实现模块化,能对多种窄线宽种子源进行放大。在MOPA光纤激光器的实现中,输出光的光束质量和输出功率受到多种因素的约束。其中,放大自发辐射(amplified spontaneous emission,ASE)和自激振荡对输出光的光束质量有显著的影响,而受激布里渊散射(stimulated Brillouin scattering,SBS)则主要限制激光的高功率输出。如何抑制SBS、尽量减少ASE和自激振荡对输出光的影响是光纤激光器实现高功率放大的关键技术之一[10-12]

      本课题组采用自制1064nm环形激光器作为种子源,利用两级放大结构,通过对光纤长度、光纤纤芯和抽运参量的优化,一定程度上抑制了ASE、自激振荡和SBS对输出光质量和功率的影响,实现了功率为42W、线宽约为70MHz的1064nm激光连续输出。

    • 实验中所用MOPA结构的掺Yb保偏光纤激光器的实验装置如图 1所示。其中,种子源采用单频环形激光器,输出波长为1064nm,最大输出功率为2.75W,光谱线宽约为66.7MHz[13]。放大器部分为两级放大结构,一级放大采用10W的914nm LD作为抽运源,增益光纤为8m掺Yb光纤(ytterbium-doped fiber,YDF),光纤纤芯和包层的直径分别为10μm和130μm,吸收系数为1.3dB/m;二级放大采用两个50W的976nm锁波长LD作为抽运源,增益光纤为2.4m掺Yb光纤,光纤纤芯和包层直径分别为20μm和130μm,吸收系数为3.5dB/m。由环形固体激光器输出的种子光经准直、聚焦后耦合进无源光纤中,再经隔离器和合束器的信号端进入双包层掺Yb光纤中。抽运光则经合束器抽运端进入光纤中。这里的隔离器用来避免反向传输的激光对种子源造成损伤。从一级放大输出的种子光经过隔离器和合束器后,进入二级放大增益光纤中,由976nm抽运光进行抽运放大,再经剥模器和端帽后输出。与剥模器一端熔接的输出端帽被切割成8°角,用来抑制自激振荡。此外,各分立器件之间用保偏熔接机FMS100P+进行熔接,实现了放大器系统的全光纤化[14]

      Figure 1.  1064nm Yb-doped fiber laser based on MOPA structure

    • 在光纤MOPA结构中,单频窄线宽连续信号光的输出功率主要受限于SBS。光纤中的SBS阈值受光纤长度、光纤的纤芯直径和损耗等因素的影响[15-17]。SBS的抽运能量的阈值可以用下式表示:

      $ {\mathit{P}_{{\rm{SBS, th}}}} \approx \frac{{21{A_{{\rm{eff}}}}}}{{{g_{\rm{B}}}{l_{{\rm{eff}}}}}} $

      (1)

      式中,gB是布里渊增益的峰值,Aeff是有效纤芯截面积,leff是有效相互作用长度。从(1)式可知,对于一般低损耗的单模光纤,光纤长度达20km左右,阈值将低至数毫瓦[18]。实验中采用减小光纤长度、增大光纤纤芯直径和提高光纤吸收系数等方法来抑制SBS。

      一级和二级放大结构采用不同波长的半导体激光器作为抽运源。976nm和914nm都可以作为掺Yb光纤的抽运波长,但二者在抽运效率、所需增益光纤和冷却能力等方面存在显著差异。与914nm抽运场合相比,976nm的吸收系数是914nm的3倍左右,抽运效率高于914nm。因此,若要达到相同的抽运功率吸收效果,914nm抽运场合用到的增益光纤要比976nm的长。另外,914nm附近的吸收带比较宽,波长的稳定性对抽运效果的影响较小。而976nm的吸收带比较窄,抽运波长稳定性对输出功率的影响显著。在一级放大中,所用增益光纤在914nm的吸收系数为1.3dB/m,为保证抽运吸收率高达90%以上,需要8m以上的增益光纤。虽然一级放大用到的增益光纤较长,但一级放大只需将毫瓦量级的种子光放到数瓦,所需抽运功率低于SBS阈值,一般不会出现受激布里渊散射[19]。在二级放大中选用的976nm抽运源为锁波长半导体激光器,具有976nm波长锁定的特点,避免因抽运波长的不稳定而导致输出功率大幅度波动。二级放大与一级放大相比,增益光纤长度短、光纤直径大,可抑制连续光高功率放大时常见的受激布里渊散射。

    • 实验中,将种子源抽运功率设置为1W,此时种子源的的输出功率为100mW,经非球面镜耦合进无源光纤后,种子光的功率为40mW,耦合效率为40%。为了模拟小功率、单频窄线宽种子源,验证小功率LD种子源放大的可行性,种子源的输出功率设置得较小。在此条件下,测得一级光纤放大器的阈值抽运功率为1.42W。继续增大抽运功率,信号光输出功率随抽运功率的增加而增大,且增长趋势近似为线性。当抽运光功率为6.8W时,输出功率约为3.6W。一级放大的输出功率与抽运功率关系曲线如图 2所示。进行一级放大后,熔接二级放大。将一级放大抽运功率稳定在6.8W,一级放大向二级放大提供的种子光功率约为3.5W。此时,测得二级放大器的阈值抽运功率为6.3W,继续增加抽运功率,输出功率随抽运功率线性增加。在抽运功率约为85W时,二级放大输出信号的功率达42W。图 3所示是二级放大输出功率与抽运功率的关系曲线。从图中可以看出,当抽运光小于12.5W时,信号光功率随抽运功率的增大而缓慢增加,当抽运功率超过20W后,信号光功率增长速率明显增大。考虑到LD的使用寿命,没有继续加大抽运功率。

      Figure 2.  1064nm laser output power vs. the launched pump power for the pre-amplifier

      Figure 3.  1064nm laser output power vs. the launched pump power for the second amplifier

      在激光器稳定输出后,用F-P扫描干涉仪测试信号光单纵模线宽。所用F-P扫描干涉仪的精细度为156,腔长0.1mm~100mm连续可调,对应自由光谱区1.5GHz~1500GHz和频率分辨率9.65MHz~9650MHz[20]图 4是激光器稳定在单纵模工作状态下的测量结果,对应单纵模的线宽约为70MHz。使用分辨率为0.35nm的AvaSpec-3648型光谱仪分别对种子光和信号光进行测量,测量结果如图 5所示。由测量结果可看出, 输出信号光的中心波长为1064nm,经MOPA结构放大后,信号光的特性没有明显变化。

      Figure 4.  Single longtitude mode by F-P scanning interferometer

      Figure 5.  Spectrum of seed light and signal light

    • 构建了一个两级放大的MOPA结构,通过优化抽运源参量、光纤长度和纤芯直径,在保持种子光单频特性的基础上,实现了单频窄线宽放大。在一级放大抽运功率6.8W、二级放大抽运功率85W时,得到了42W信号光输出。由于合光器自身损耗,光纤熔接损耗及增益光纤对抽运光吸收不彻底等原因,光光转换效率约49.4%。实验中没有观察到非线性效应,继续提高抽运光的功率,有望获得更高的1064nm信号光输出,所得的结果为下一步开展窄线宽LD种子源放大提供了依据。

参考文献 (20)

目录

    /

    返回文章
    返回