高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐近式太赫兹多孔光子晶体光纤模式特性研究

汪成程 张峰 吴根柱

引用本文:
Citation:

渐近式太赫兹多孔光子晶体光纤模式特性研究

    作者简介: 汪成程(1994-), 女, 硕士研究生, 现主要从事微腔传感的研究.
    通讯作者: 吴根柱, wugenzhu@zjnu.cn
  • 基金项目:

    浙江省自然科学基金资助项目 LY19F050014

    浙江省自然科学基金资助项目 LY19F050015

  • 中图分类号: TN252

Study on mode characteristics of asymptotic terahertz porous photonic crystal fibers

    Corresponding author: WU Genzhu, wugenzhu@zjnu.cn
  • CLC number: TN252

  • 摘要: 为了研究太赫兹波在新型渐近式多孔光子晶体光纤的传输特性, 采用有限元数值分析法进行了数值仿真, 分析了有效模态面积、纤芯孔隙度对有效材料损失及限制损耗、功率分布分数等波导特性的影响。结果表明, 在单模传输范围0.5THz~0.85THz内, 通过在光纤上引入渐近矩形阵列气孔和椭圆空穴, 实现了零色散、0.0532高双折射、有效材料损失为0.1157/cm, 限制损耗低至1.47×10-4dB/cm。此研究可用于制造极化THz波导、滤波器等, 对新一代太赫兹波导实现长距离、高性能传输的研究具有重要意义。
  • Figure 1.  Cross-sectional view of the proposed PC-PCF

    Figure 2.  Mode field distribution of the proposed PCF for core diameter 320μm and operating frequency 0.85THz

    Figure 3.  Mode field confinement of the proposed PCF for different porosity

    a~c—model field distributions of 14%, 19% and 24% porosity of the fiber core respectively d—birefringence varies with frequency in different porosities

    Figure 4.  Effective modal area of x-polarization and y-polarization as a function of frequency

    Figure 5.  Variation gauge of dispersion with frequency

    Figure 6.  Effective material loss and confinement loss as a function of frequency for different values of core porosity at Dcore=320μm

    Figure 7.  Power fraction as a function of frequency at Dcore =320μm

  • [1]

    AMING A, RAHMAN B M A. Design and characterization low-loss modes in dielectric-coated hollow-core waveguides at THz frequency[J]. Journal of Lightwave Technology, 2018, 36(13):2716-2722. doi: 10.1109/JLT.2018.2820690
    [2]

    WANG C, WU G Zh, ZHOU P, et al. Mode properties of hybrid plasmonic waveguide with an metal nano-rib[J]. Acta Photonica Sinica, 2014, 43(9): 0916001(in Chinese). doi: 10.3788/gzxb20144309.0916001
    [3]

    HSU J M. Systematic design of highly birefringent photonic crystal fibers [J]. Applied Physics, 2017, B123(3):73. 
    [4]

    ATAKARAMIANS S, SHAHRAAM A V, EBENDORFF-HEIDEPRIEM H, et al. THz porous fibers: Design, fabrication and experimental characterization[J]. Optics Express, 2009, 17(16):14053-14062. doi: 10.1364/OE.17.014053
    [5]

    HASANUZZAMAN G K M, RANA S, HABIB M S. A novel low loss, highly birefringent photonic crystal fiber in THz regime[J]. IEEE Photonics Technology Letters, 2016, 28(8):899-902. doi: 10.1109/LPT.2016.2517083
    [6]

    KAWSAR A, SAWRAD C, KUMAR P B, et al. Ultrahigh birefringence, ultralow material loss porous core sigle-mode fiber for terahertz wave guidance[J]. Applied Optics, 2017, 56(12):3477-3483. doi: 10.1364/AO.56.003477
    [7]

    ZHANG F, WU G Zh, WANG Ch Ch. Influence of surface curvature on mode and sensing characteristics of quartz capillary micro-bottles. Laser Technology, 2018, 42(6): 840-844(in Chinese). 
    [8]

    CHU Zh Zh, YOU L B, WANG Q Sh, et al. Progress in fabrication of polymer optical fiber gratings[J]. Laser Technology, 2018, 42(1): 11-18(in Chinese). 
    [9]

    ORTIGOSABLANCH A, KNIGHT J C, WADSWORTH W J, et al. Highly birefringent photonic crystal fibers[J]. Optics Letters, 2000, 25(18):1325-1327. doi: 10.1364/OL.25.001325
    [10]

    WU Zh, SHI Zh, XIA H, et al. Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit[J]. IEEE Photonics Journal, 2016, 8(6):1-11. 
    [11]

    CHEN N N, LIANG J, REN L, et al. High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance[J]. Applied Optics, 2013, 52(21):5297-5302. doi: 10.1364/AO.52.005297
    [12]

    HASANUZZAMAN G K M, HABIB M S, ABDUR RAZZAK S M, et al. Low loss single mode porous-core kagome photonic crystal fiber for THz wave guidance[J]. Journal of Lightwave Technology, 2015, 33 (19): 4027-4031. doi: 10.1109/JLT.2015.2459232
    [13]

    CHO M, KIM J, PARK H, et al. Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers[J]. Optics Express, 2008, 16(1):7-12. 
    [14]

    ISLAM R, HABIB M S, HASANUZZAMAN G K M, et al. Novel porous fiber based on dualasymmetry for low-loss polarization maintaining THz wave guidance[J]. Optics Letters, 2016, 41(3):440-443. doi: 10.1364/OL.41.000440
    [15]

    REN G. Low-loss air-core polarization maintaining terahertz fiber [J]. Optics Express, 2008, 16(18): 13593-13598. doi: 10.1364/OE.16.013593
    [16]

    KIM S E, KIM B H, LEE C G, et al. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. [J]. Optics Express, 2012, 20(2):1385-1391. doi: 10.1364/OE.20.001385
    [17]

    LIU M, YUAN H T, SHUM P, et al. Simultaneous achievement of highly birefringent and nonlinear photonic crystal fibers with an elliptical tellurite core[J]. Applied Optics, 2018, 57(22):6383-6387. doi: 10.1364/AO.57.006383
    [18]

    ISLAM M S, FAISAL M, RAZZAK S M A. Extremely low loss porous-core photonic crystal fiber with ul tra-flat dispersion in terahertz regime[J]. Journal of the Optical Society of America, 2017, B34(8):1747-1754.
    [19]

    YANG T Y, DING C, ZIOLKOWSKI R W, et al. A scalable THz photonic crystal fiber with partially-slotted core that exhibits improved birefringence and reduced loss[J]. Journal of Lightwave Technology, 2018, 36(16):3408-3417. doi: 10.1109/JLT.2018.2842825
    [20]

    HABIB M A, ANOWER M S. Low loss highly birefringent porous core fiber for single mode terahertz wave guidance[J]. Current Optics and Photonics, 2018, 2(3): 215-220. 
    [21]

    ATAKARAMIANS S, SHAHRAAM A V, EBENDORFF-HEIDEPRIEM H, et al. THz porous fibers: Design, fabrication and experimental characterization[J]. Optics Express, 2009, 17(16):14053-15062. doi: 10.1364/OE.17.014053
    [22]

    KAIJAGE S F, OUYANG Zh B, JIN X. Porous-core photonic crystal fiber for low loss terahertz wave guiding[J]. IEEE Photonics Technology Letters, 2013, 25(15):1454-1457. doi: 10.1109/LPT.2013.2266412
  • [1] 黄建军李港陈檬庞庆生毕向军 . 光子晶体光纤色散特性的数值分析. 激光技术, 2006, 30(4): 432-435.
    [2] 宋德君谢康肖峻 . 基于有限元光子晶体光纤的模场与色散分析. 激光技术, 2012, 36(1): 111-113,117. doi: 10.3969/j.issn.1001-3806.2012.01.028
    [3] 陈娟葛文萍王晓薇 . 八边形低色散高非线性光子晶体光纤的设计. 激光技术, 2012, 36(4): 480-484. doi: 10.3969/j.issn.1001-806.2012.04.011
    [4] 刘启能刘沁 . 材料色散对光子晶体全反射隧穿光场分布的影响. 激光技术, 2014, 38(6): 738-741. doi: 10.7510/jgjs.issn.1001-3806.2014.06.004
    [5] 代洪霞刘启能 . 1维方形掺杂光子晶体波导中缺陷模的色散特性. 激光技术, 2013, 37(3): 338-341. doi: 10.7510/jgjs.issn.1001-3806.2013.03.016
    [6] 詹仪李效增郑义 . 光子晶体光纤的色散特性分析. 激光技术, 2009, 33(1): 24-26.
    [7] 廖洲一刘敏钱燕何丁丁简多 . 八角格子色散补偿光纤. 激光技术, 2013, 37(4): 506-510. doi: 10.7510/jgjs.issn.1001-3806.2013.04.020
    [8] 韩艳玲王宏 . 含色散增益介质光子晶体微腔的光学特性. 激光技术, 2008, 32(2): 207-209.
    [9] 韦应生苏安许江勇唐秀福蒙成举高英俊 . 四元异质结构光子晶体的双通道光学滤波特性. 激光技术, 2018, 42(2): 212-216. doi: 10.7510/jgjs.issn.1001-3806.2018.02.014
    [10] 张峰吴根柱汪成程 . 表面曲率对石英毛细管微瓶模式及传感特性影响. 激光技术, 2018, 42(6): 840-844. doi: 10.7510/jgjs.issn.1001-3806.2018.06.021
    [11] 王润轩 . 色散补偿双芯光子晶体光纤的数值研究. 激光技术, 2008, 32(6): 576-578,589.
    [12] 吴维丽邱琪 . 高阶模补偿单模光纤色散技术研究. 激光技术, 2004, 28(3): 303-305,311.
    [13] 潘玉寨张军胡贵军张亮王立军 . 光子晶体光纤及其激光器. 激光技术, 2004, 28(1): 48-51.
    [14] 杨静刘敏朱敏范宇 . 零模间色散三芯光子晶体光纤. 激光技术, 2015, 39(4): 528-532. doi: 10.7510/jgjs.issn.1001-3806.2015.04.022
    [15] 张学典陈楠聂富坤逯兴莲常敏 . 基于结构和填充的光子晶体光纤色散分析. 激光技术, 2018, 42(1): 48-52. doi: 10.7510/jgjs.issn.1001-3806.2018.01.010
    [16] 姜凌红侯蓝田邹金红侯宇 . 平坦色散低限制损耗光子晶体光纤的设计. 激光技术, 2011, 35(1): 61-64. doi: 10.3969/j.issn.1001-3806.2011.01.018
    [17] 许江勇苏安周丽萍高英俊谭福奎唐秀福 . 左右手材料光子晶体的双重光学滤波功能. 激光技术, 2018, 42(4): 550-555. doi: 10.7510/jgjs.issn.1001-3806.2018.04.022
    [18] 郝清海许玉龙苏希玉王梅 . 含非线性缺陷的光子晶体异质结构中的光学响应. 激光技术, 2007, 31(1): 68-70.
    [19] 罗瑛马杰钟永春 . 光子晶体微纳光纤的制备新方法及其特性研究. 激光技术, 2015, 39(3): 312-315. doi: 10.7510/jgjs.issn.1001-3806.2015.03.006
    [20] 范希智 . 二次元多周期1维光子晶体带隙的实质. 激光技术, 2021, 45(3): 313-317. doi: 10.7510/jgjs.issn.1001-3806.2021.03.008
  • 加载中
图(7)
计量
  • 文章访问数:  6498
  • HTML全文浏览量:  4793
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 录用日期:  2019-01-26
  • 刊出日期:  2019-11-25

渐近式太赫兹多孔光子晶体光纤模式特性研究

    通讯作者: 吴根柱, wugenzhu@zjnu.cn
    作者简介: 汪成程(1994-), 女, 硕士研究生, 现主要从事微腔传感的研究
  • 1. 浙江师范大学 物理与电子信息工程学院, 金华 321004
  • 2. 浙江师范大学 行知学院, 金华 321004
基金项目:  浙江省自然科学基金资助项目 LY19F050014浙江省自然科学基金资助项目 LY19F050015

摘要: 为了研究太赫兹波在新型渐近式多孔光子晶体光纤的传输特性, 采用有限元数值分析法进行了数值仿真, 分析了有效模态面积、纤芯孔隙度对有效材料损失及限制损耗、功率分布分数等波导特性的影响。结果表明, 在单模传输范围0.5THz~0.85THz内, 通过在光纤上引入渐近矩形阵列气孔和椭圆空穴, 实现了零色散、0.0532高双折射、有效材料损失为0.1157/cm, 限制损耗低至1.47×10-4dB/cm。此研究可用于制造极化THz波导、滤波器等, 对新一代太赫兹波导实现长距离、高性能传输的研究具有重要意义。

English Abstract

    • 太赫兹[1](terahertz, THz)波是指频率在0.1THz~10THz,波长在0.03mm~3mm范围内的电磁波,波谱位于微波与红外之间,也被称为“太赫兹空隙”。随着太赫兹技术的不断发展,它在物理、化学、电子信息、生命科学、国家安全与反恐等多个领域都显现出独特的优越性和巨大的应用前景。传统THz系统基于自由空间通信,发射机与接收机尺寸、位置不一致导致严重的接收泄露,不仅难以调控且损耗大。为实现高效THz波传输,学者们先后提出多种波导,包括金属波导[2]、塑料聚合物纤维等。以波导为基础的太赫兹器件凭借其柔性可弯曲、使用方便等特点已然成为太赫兹波段传输的重要途径之一。传统光子晶体光纤(photonic crystal fiber,PCF)纤芯为实心,吸收损耗高,限制了通信距离。为克服这一问题,将纤芯中引入空穴减少核心介质材料,这种光纤被称为多孔光子晶体光纤[3] (porous-core photonic crystal fiber,PC-PCF)。与传统保偏光纤相比,PC-PCF具有双折射高、温度稳定性好、抗辐射能力强等优点,被广泛应用于光纤激光器、光纤传感器、偏振耦合器、偏振分束器、波分复用器等光学器件。ATAKARAMIANS等人[4]首次设计并制备了基于聚合物(polymethyl methacrylate, PMMA)的矩形多孔光子晶体光纤,双折射为0.012。之后,HASANUZZAMAN等人[5]在纤芯中引入双孔空气单元,双折射率提高至0.033,但有效材料损失(effective material loss,EML)偏高,不利于信号在长时间、长距离的高效传输。最近,KAWSAR等人[6]在包层中引进五层六边形气孔和双层多孔芯,损耗减小明显,但双折射方面略有不足,微扰产生的耦合作用不利于光纤在传感、通信技术等方面广泛应用。

      本文中提出一种渐近式多孔高双折射太赫兹光子晶体光纤,采用圆形完美匹配层(perfect matching layer,PML)作为边界条件,在纤芯中引入矩形阵列,矩形孔尺寸向中心呈比例线性递减,孔间距离也同比例减少, 这是PCF设计中从未见过的。这种结构可使纤芯气孔数量更多、更集中、更稳定,有利于光纤在太赫兹波段的传输。利用有限元法[7]计算并分析了双折射率、有效材料损失、限制损耗(confinement loss,CL)、功率分数、色散和有效模态面积等特性。

    • 所提出的渐近式多孔光子晶体光纤(PC-PCF)如图 1所示。纤芯矩形孔径大小、距离同时按1, 0.93, 0.86, 0.79, 0.72比例向中心递缩,包层采用3层六边形气孔阵列,内层引入两个椭圆空气孔,选择这种结构有以下4个主要原因:(1)光纤传统六边形结构为光提供更佳约束条件; (2)高空气填充比(D/Λ)为0.962,其中D为圆孔直径,Λ为孔间距离,气孔排列紧密,节约介质材料; (3)3层气孔环数使纤维厚度较小,具有更高集成度、灵活度; (4)使用矩形、椭圆气孔提高双折射率,有利于传感、滤波等领域更广泛应用。

      Figure 1.  Cross-sectional view of the proposed PC-PCF

      纤芯最外层矩形气孔长、宽与孔间距离Λ有关,相邻孔间横向距离Lc=0.091Λ,纵向距离Lh=0.13Λ。矩形孔尺寸向中心呈比例线性递减,孔间距离也同比例减少, 比例选取满足气孔不重叠同时可获得最大双折射,纤维背景材料选取一种名为Topas[8]的环烯烃共聚物(cyclic olefin copolymer, COC),折射率在0.1THz~2THz之间为常数,即n=1.5258, 具有低吸水性、色散平坦、对湿度不敏感等特性,非常适合作为太赫兹波段的传输介质。

    • 基于有限元法对多孔光子晶体光纤(PC-PCF)进行数值模拟与仿真。包层外,采用圆形完美匹配层(PML)作为边界条件,厚度占纤维总半径16%。整个仿真过程,定型几何由18176个域单元和2597个边界单元构成完整网格。

      为检验PC-PCF保偏性能, 首先研究其双折射特性,计算公式如下[9]

      $ B=\left|n_{x}-n_{y}\right| $

      (1)

      式中, B为双折射率,nxnyx, y方向偏振折射率。

      为确保PC-PCF能够高效传输THz波,电磁场应严格限制在纤芯内。光纤模场分布如图 2所示,在光纤单模传输范围内,对光纤进行逆时针方向旋转,旋转角θ为0°~60°,双折射率B=0.0532±0.0001,与先前参考文献中的报道[10-11]相比, 保偏能力更好,几乎不发生变化。双折射率与中心旋转角无关,不需调试特定角度以获得最大双折射,避免因调试而产生误差,在实际应用及操作中具有更优越的稳定性和抗干扰能力。

      Figure 2.  Mode field distribution of the proposed PCF for core diameter 320μm and operating frequency 0.85THz

      纤芯孔隙度P[12]即纤芯气孔面积占纤芯面积百分率,光纤的光场分布和双折射影响如图 3所示。图中模态功率被严格限制在纤芯中,在0.85THz工作频率下,适当调整空隙度值,双折射率高达0.0532,远高于先前参考文献中的[13-16]报道。

      Figure 3.  Mode field confinement of the proposed PCF for different porosity

      为使THz波在纤芯传输更集中,有效模态面积可由下式算出[17]:

      $ A_{\mathrm{eff}}=\frac{\left(\iint E^{2} \mathrm{d} x \mathrm{d} y\right)^{2}}{\iint E^{4} \mathrm{d} x \mathrm{d} y} $

      (2)

      式中, E为电场振幅。图 4中是xy方向偏振有效模态面积随频率的变化曲线。从图中可明显看出, 随入射频率增加,有效模态面积减小,电磁波传播更趋于纤芯中心。色散是由于光纤传输时延不同而引起的脉冲展宽效应,主要影响系统传输能量大小及传播距离,是光纤一个非常重要的特性,它包括材料色散和波导色散。由于Topas在0.1THz~2THz频段下折射率为常数, 因此该频段下材料色散可以忽略不计,色散主要源于波导色散,可由下式得出[18]

      Figure 4.  Effective modal area of x-polarization and y-polarization as a function of frequency

      $ \beta_{2}=\frac{2}{c} \frac{\mathrm{d} n_{\mathrm{eff}}}{\mathrm{d} \omega}+\frac{\omega}{c} \frac{\mathrm{d}^{2} n_{\mathrm{eff}}}{\mathrm{d} \omega^{2}} $

      (3)

      式中,β2为波导色散, 单位为ps/THz/cm, neff为PCF有效折射率,c为真空中光速, ω是角频率(ω=2πf)。从图 5中可以看出,太赫兹PCF在0.5THz~0.85THz频率范围内呈现出一种相对较低且平坦的色散轮廓,频率增大,色散曲线更加平稳,y向偏振在0.845THz时到达第1个色散零点,临近0.85THz时达到第2个色散零点,整体色散低于先前报道[19-21]

      Figure 5.  Variation gauge of dispersion with frequency

      THz波段下PC-PCF这类多孔微结构纤维,主要传输损耗源于自身材料吸收,通常表现为有效模态损耗(EML),EML是制造THz波导中一个非常重要的特性,是设计高效THz波导主要考虑因素之一,它可以通过下式计算得到[19]

      $ \alpha_{\mathrm{eff}}=\frac{\left(\varepsilon_{0} / \mu_{0}\right)^{1 / 2} \iint_{A_{\mathrm{m}}} n \alpha_{\mathrm{m}}|E|^{2} \mathrm{d} A}{2 \int_{A_{\mathrm{all}}} S_{z} \mathrm{d} A} \mathrm{cm}^{-1} $

      (4)

      式中, ε0μ0分别是真空中的介电常数、磁导率, n是Topas材料折射率, E是模态电场, A为面积,Am为介质材料区域,αm是Topas材料吸收损失, 分母是对PCF整体区域Aall进行积分,Sz是坡印亭矢量的z分量。

      限制损耗(CL)是光子晶体光纤中通常发生的另一种损耗形式,与有效折射率虚部有关。因为它界定了光波导传输长度范围,是限制THz波在核心区域传播的重要指标之一,可用下式计算得到[20]

      $ {\alpha _{{\rm{CL}}}} = 8.686 \times \frac{{2{\rm{ \mathsf{ π} }}f}}{c}{\mathop{\rm Im}\nolimits} \left( {{n_{{\rm{eff}}}}} \right) \times {10^{ - 2}} $

      (5)

      式中, f为工作频率,Im(neff)为有效折射率虚部, αCL单位为dB/cm。

      不同孔隙度EML随频率变化规律如图 6所示,频率增大,EML也随之增加。相反,限制损耗(CL)则随频率增加而呈下降趋势。0.85THz时,EML低至0.1157/cm,CL为1.47×10-4dB/cm,小于之前报道[21]。可见在固定工作频率下,利用较高空气孔隙度可实现降低EML目的。孔隙度增大,单位气孔所对应纤芯背景材料(Topas)体积减小,大部分模态功率进入多孔,有效材料损失减小。同理,限制损耗随纤芯孔隙度值的增大而增加。

      Figure 6.  Effective material loss and confinement loss as a function of frequency for different values of core porosity at Dcore=320μm

      模态功率分数是PCF的另一个重要性质,即纤维内部不同区域功率分布百分率。在核心空气孔中传播能量大小用功率分数量化表示,功率分数可由下式计算[22]

      $ \eta=\frac{\int_{x} S_{z} \mathrm{d} A}{\int_{A_{\mathrm{all}}} S_{{z}} \mathrm{d} A} $

      (6)

      式中,η表示模式功率分数, x代表任意核心矩形气孔、背景材料或包层空气孔3个区域之一。图 7是PCF两个正交偏振态,不同区域模态功率作为频率的函数。f=0.85THz时,矩形孔x极化功率约占总功率29.1%, y极化功率约占总功率20.9%,所有能量都被限制在波导内,无任何能量泄露。一部分光能被用于传输;另一部分光能分布于多孔纤维包层区域。

      Figure 7.  Power fraction as a function of frequency at Dcore =320μm

    • 基于全矢量有限元法对多孔高双折射光子晶体光纤双折射、色散、有效模场面积和传输损耗等特性进行了讨论分析。通过调节频率和纤芯空隙度来实现太赫兹波段极低EML和约束损耗,实现零色散并获得超高双折射,这是其它THz-PCF所不具备的。此外,双折射率与旋转角无关,能有效提高其在操作中的稳定性和抗干扰能力,这种低损耗、零色散、高双折射光纤可用于制造极化THz波导,如极化THz滤波器、传感器等。目前,太赫兹频率范围内PCF已被制作完成,具有亚微米螺距PCF正在常规制造中。相比这些PCF,此结构具有更大尺寸,从而最大限度地减少了制造难度,可通过毛细管堆积技术、减法技术或溶胶-凝胶铸造法进一步实现完成,为新一代太赫兹的高速无线通信技术研究具有重要意义。

参考文献 (22)

目录

    /

    返回文章
    返回