高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半导体可饱和吸收镜的可调谐光纤激光器

王婉琳 王蓟 徐廉伟 张家瑞

引用本文:
Citation:

基于半导体可饱和吸收镜的可调谐光纤激光器

    作者简介: 王婉琳(1994-), 女, 硕士研究生, 主要从事锁模光纤激光器方面的研究.
    通讯作者: 王蓟, jiji_w@163.com
  • 基金项目:

    吉林省科技发展计划资助项目 20180201033GX

    吉林省教育厅"十三五"科学技术资助项目 JJKH20190588KJ

    吉林省科技厅资助项目 20190302125GX

  • 中图分类号: TN248.4

Tunable fiber lasers based on semiconductor saturable absorber mirrors

    Corresponding author: WANG Ji, jiji_w@163.com ;
  • CLC number: TN248.4

  • 摘要: 为了实现锁模光纤激光器的波长可调谐, 采用半导体可饱和吸收镜(SESAM), 搭建了环形腔被动锁模掺镱光纤激光器。在腔内无偏振控制器及可调谐滤波器等器件的前提下, 通过改变光纤跳线端面至SESAM的距离, 实现光谱在1029.5nm~1042.7nm之间的稳定可调谐, 基频重复频率为18.0MHz, 脉冲宽度为130ps, 锁模脉冲信噪比达44dB。结果表明, 该锁模光纤激光器具有较高的信噪比及较宽的可调谐范围。该研究为可调谐被动锁模光纤激光器的研制提供了重要的参考价值。
  • Figure 1.  Experimental device diagram of Yb-doped fiber laser with ring cavity

    Figure 2.  a—mode-locked pulse sequence diagram b—single pulse diagram

    Figure 3.  Output spectrum of tunable mode-locked fiber laser (tuning range of 11.2nm)

    Figure 4.  Changes of spectral width and pulse width with pump power

    Figure 5.  Relationship between pump power and output power

    Figure 6.  Frequency spectrum of mode-locked pulse

  • [1]

    OKHOTNIKO O V, GRUDININ A, PESSA M. Ultra-fast fibre laser systems based on SESAM technology: New horizons and applications[J].New Journal of Physics, 2004, 6(1):177.
    [2]

    OKHOTNIKOV O G, GOMES L, XIANG N, et al.Mode-locked ytterbium fiber laser tunable in the 980~1070nm spectral range[J]. Optics Letters, 2003, 28(17):1522-1524. doi: 10.1364/OL.28.001522
    [3]

    LETOKHOV V S. Laser biology and medicine[J]. Nature, 1985, 316(6026):325-330. doi: 10.1038/316325a0
    [4]

    AGNESI A, CARRA L, di MARCO C, et al.Fourier-limited 19ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085nm[J].IEEE Photonics Technology Letters, 2012, 24(11):927-929. doi: 10.1109/LPT.2012.2190893
    [5]

    ZHU X J, WANG Ch H, LIU Sh X, et al.Tunable high energy pulses with a low repetition rate from a passively mode locked Yb-doped fiber laser[C]//International Conference on Electronics and Optoelectro-nics.New York, USA: IEEE, 2011: 156-158.
    [6]

    BAI Y B, XIANG W H, ZU P, et al.Tunable dual-wavelegth passively mode-locked yb-doped fiber laser using sesam[J].Chinese Optics Letters, 2012, 10(11):111405. doi: 10.3788/COL201210.111405
    [7]

    GOU D D, YANG S G, YIN F F, et al.Widely tunable mode-locked fiber laser operating in 1μm wavelength range[J].Acta Optica Sinica, 2013, 33(7):0706013(in Chinese). doi: 10.3788/AOS201333.0706013
    [8]

    SUN Zh P, POPA D, HASAN T, et al.A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser[J].Nano Research, 2010, 3(9):653-660. doi: 10.1007/s12274-010-0026-4
    [9]

    SCHULTZ M, KAROW H, WANDT D, et al.Ytterbium femtosecond fiber laser without dispersion compensation tunable from 1015nm to 1050nm[J]. Optics Communications, 2009, 282(13):2567-2570. doi: 10.1016/j.optcom.2009.03.026
    [10]

    ZOU F, WANG Zh K, WANG Z W, et al.Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity[J].Optics & Laser Technology, 2017, 92:133-137.
    [11]

    JEON M Y, LEE H K, KIM K H, et al.An electronically wavelength-tunable mode-locked fiber laser using an all-fiber acousto-optic tunable filter[J].IEEE Photonics Technology Letters, 1996, 8(12):1618-1620. doi: 10.1109/68.544696
    [12]

    OUYANG Ch M, SHUM P, WANG H H, et al.Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber sagnac loop filter[J].IEEE Journal of Quantum Electronics, 2011, 47(2):198-203.
    [13]

    WANG Zh K, DU S T, WANG J H, et al.All fiber tunable-or dual-wavelength Yb-doped fiber laser covering from dissipative soliton to dissipative soliton resonance[J]Chinese Optics Letters, 2016, 14(4):041401. doi: 10.3788/COL201614.041401
    [14]

    YAN Zh Y, LI Z H, TANG Y L, et al.Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution[J].Optics Express, 2015, 23(4):4369-4376. doi: 10.1364/OE.23.004369
    [15]

    HUANG Sh Sh, WANG Y G, YAN P G, et al.Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser[J]. Optics Express, 2014, 22(10):11417-11426. doi: 10.1364/OE.22.011417
    [16]

    LIN H Q, GUO Ch Y, RUAN Sh Ch, et al.Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-normal-dispersion Yb-doped fiber laser[J].IEEE Photonics Journal, 2013, 5(5):1501807. doi: 10.1109/JPHOT.2013.2281977
    [17]

    LUO A P, LUO Z C, XU W C, et al.Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation[J].Laser Physics Letters, 2011, 8(8):601-605. doi: 10.1002/lapl.201110039
    [18]

    DU J, XIONG Zh T, SHE M, et al.Tunable passive mode-locked thulium-doped fiber lasers[J].Laser Technology, 2019, 43(1):11-14(in Chinese).
    [19]

    ZOU Ch H, WANG T X, YAN Zh J, et al.Wavelength-tunable mode-locked fiber laser with birefringence-enhanced cavity[C]//2017 16th International Conference on Optical Communications and Networks (ICOCN).New York, USA: IEEE, 2017: 1-3.
  • [1] 欧攀贾豫东林志立刘磊 . 基于饱和吸收镜的被动锁模掺铒光纤激光器. 激光技术, 2011, 35(1): 58-60. doi: 10.3969/j.issn.1001-3806.2011.01.017
    [2] 夏晶蒋国保赵楚军 . 高吸收调制下掺铥锁模光纤激光器的数值研究. 激光技术, 2016, 40(4): 571-575. doi: 10.7510/jgjs.issn.1001-3806.2016.04.024
    [3] 况庆强桑明煌聂义友张祖兴付贵阳 . 利用NALM结构的被动锁模掺铒光纤激光器的研究. 激光技术, 2008, 32(6): 631-634.
    [4] 张祖兴伍剑徐坤林金桐 . 被动锁模光纤激光器的多模式输出. 激光技术, 2009, 33(5): 548-550,554. doi: 10.3969/j.issn.1001-3806.2009.05.020
    [5] 李立卫王加贤王娟娟 . SESAM实现脉冲式Nd:YAG激光器的被动锁模特性研究. 激光技术, 2008, 32(3): 296-298,301.
    [6] 伍波杨泽后黄彪赵晓军樊冬周鼎富侯天晋 . 低重复频率脉冲掺镱光纤放大器. 激光技术, 2009, 33(5): 532-534. doi: 10.3969/j.issn.1001-3806.2009.05.016
    [7] 赵羽刘永智赵德双黄琳 . 光纤激光器锁模技术研究进展. 激光技术, 2009, 33(2): 162-165.
    [8] 胡积宝李谋平 . 光通信系统中新型可调谐半导体激光器的设计. 激光技术, 2016, 40(2): 280-283. doi: 10.7510/jgjs.issn.1001-3806.2016.02.027
    [9] 曹玲杨玲珍郭雄英周希坚 . 非线性光纤环形镜掺铒光纤激光器的实验研究. 激光技术, 2007, 31(6): 613-615,619.
    [10] 杨玲珍王云才陈国夫王屹山赵卫 . 1053nm超短脉冲光纤激光的产生. 激光技术, 2007, 31(6): 610-612.
    [11] 王凤蕊李明中林宏奂王建军 . 掺镱多模双包层光纤激光器弯曲选模研究. 激光技术, 2007, 31(6): 607-609,612.
    [12] 吉正继武向农殷业肖龙 . 基于高双折射光纤环镜的可调谐光滤波器. 激光技术, 2014, 38(1): 54-57. doi: 10.7510/jgjs.issn.1001-3806.2014.01.012
    [13] 李远延凤平刘硕白卓娅 . 大模场掺铥光纤增益特性研究. 激光技术, 2018, 42(5): 638-645. doi: 10.7510/jgjs.issn.1001-3806.2018.05.011
    [14] 龙小波杨建良 . 双环内级联采样光栅的多波长锁模光纤激光器. 激光技术, 2010, 34(2): 224-226,231. doi: 10.3969/j.issn.1001-3806.2010.02.022
    [15] 陈伟成徐文成 . 锁模光纤激光器中的矢量孤子簇. 激光技术, 2010, 34(3): 354-356,388. doi: 10.3969/j.issn.1001-3806.2010.03.019
    [16] 黄小东张小民李明中王建军张锐赵圣之车雅良许党朋 . 高功率掺Yb3+大模场光纤放大器实验研究. 激光技术, 2009, 33(4): 400-402. doi: 10.3969/j.issn.1001-3806.2009.04.019
    [17] 杨静刘敏朱敏范宇 . 零模间色散三芯光子晶体光纤. 激光技术, 2015, 39(4): 528-532. doi: 10.7510/jgjs.issn.1001-3806.2015.04.022
    [18] 袁明辉 . 偏振模色散所致光纤链路传输损伤分析. 激光技术, 2009, 33(4): 397-399. doi: 10.3969/j.issn.1001-3806.2009.04.017
    [19] 马玲芳刘敏董传培张敏贺冯良 . 双空芯光子晶体光纤表面模控制方法. 激光技术, 2011, 35(6): 748-751. doi: 10.3969/j.issn.1001-3806.2011.06.007
    [20] 任杰洪治张明 . 新型分步合成法制备的P567固态染料可调谐激光器. 激光技术, 2004, 28(1): 52-54.
  • 加载中
图(6)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  269
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-19
  • 录用日期:  2019-01-09
  • 刊出日期:  2019-09-25

基于半导体可饱和吸收镜的可调谐光纤激光器

    通讯作者: 王蓟, jiji_w@163.com
    作者简介: 王婉琳(1994-), 女, 硕士研究生, 主要从事锁模光纤激光器方面的研究
  • 长春理工大学 理学院, 长春 130022
基金项目:  吉林省科技发展计划资助项目 20180201033GX吉林省教育厅"十三五"科学技术资助项目 JJKH20190588KJ吉林省科技厅资助项目 20190302125GX

摘要: 为了实现锁模光纤激光器的波长可调谐, 采用半导体可饱和吸收镜(SESAM), 搭建了环形腔被动锁模掺镱光纤激光器。在腔内无偏振控制器及可调谐滤波器等器件的前提下, 通过改变光纤跳线端面至SESAM的距离, 实现光谱在1029.5nm~1042.7nm之间的稳定可调谐, 基频重复频率为18.0MHz, 脉冲宽度为130ps, 锁模脉冲信噪比达44dB。结果表明, 该锁模光纤激光器具有较高的信噪比及较宽的可调谐范围。该研究为可调谐被动锁模光纤激光器的研制提供了重要的参考价值。

English Abstract

    • 波长可调谐锁模脉冲光纤激光器因其脉冲宽度窄、峰值功率高、频谱范围宽、简洁紧凑、高效散热等优点,在激光光谱学、光学测量、生物医学、电信等领域[1-3]有着广泛的应用。近年来,由于光参量振荡器和光参量放大器等领域的快速发展,可调谐超短脉冲激光器也可作为小型、经济有效的种子源用于产生大能量可调谐的超短脉冲。因此,对可调谐脉冲光纤激光器的研究具有重要的意义。

      迄今为止,有多种实现可调谐脉冲输出的方式。利用啁啾光纤光栅、相移长周期光纤光栅、体布喇格光栅[4-6]的调谐特性,可以实现输出波长的稳定可调谐,但受到光栅器件的参量限制,调谐范围一般较小,且体布喇格光栅为空间元件,不利于实现全光纤化结构;利用可调谐带通滤波器,也可以实现输出波长的调谐[7-10],商业化的可调谐滤波器具有很好的环境稳定性,但成本较高。也有利用马赫-曾德尔干涉仪、声光可调滤波器[11]及Sagnac环滤波器[12]等实现可调谐激光输出的,但上述方法系统结构复杂、成本较高,并不利于激光器的全光纤结构。此外,通过控制谐振腔内的偏振态以影响腔内双折射[13-19],进而产生双折射滤波效应,也可实现输出波长的调谐,但该种方法环境稳定性较差。

      本文中搭建了基于半导体可饱和吸收镜(semiconductor saturable absorber mirror,SESAM)的可调谐被动锁模掺镱光纤激光器,腔内无波长可调谐器件及偏振控制器,这在一定程度上节约了成本。通过改变光纤跳线端面至SESAM的距离,实现了输出波长的稳定可调谐(1029.5nm~1042.7nm),调谐范围13.2nm,锁模脉冲基频18.0MHz,脉宽130ps,信噪比44dB。

    • 图 1为基于SESAM的可调谐被动锁模掺镱光纤激光器的装置图。可调谐光纤激光器采用环形腔结构,由高掺杂浓度掺镱光纤(ytterbium-doped fiber, YDF)、波分复用器(wavelength division multiplexing, WDM)、隔离器(isolator, ISO)、环形器(circulator)、SESAM、输出耦合器组成。抽运源是中心波长为976nm、最大输出功率为550mW的半导体激光器,抽运光经波分复用器耦合进增益光纤,增益光纤对抽运光的吸收系数为250dB/m,模场直径为7.5μm,色散系数为22.513ps2/km,长度为120cm。其它光纤均为普通单模光纤(HI1060),色散系数为24.539ps2/km。SESAM的调制深度为18%,饱和通量为30μJ/cm2,非饱和损耗为10%。其中半导体可饱和吸收镜是实现锁模脉冲输出的核心器件,其吸收特性是光强越弱的部分吸收越多,光强越强的部分吸收越少,这样光脉冲通过半导体可饱和吸收镜时,中央高强度部分几乎没有损耗而周围低强度部分则损耗很大,从而使得脉冲窄化,实现锁模脉冲输出。输出耦合器的80%端反馈回腔内,20%端输出。整个光纤激光器采用全光纤结构,总腔长12m。腔内净色散为0.287ps2

      Figure 1.  Experimental device diagram of Yb-doped fiber laser with ring cavity

    • 抽运功率从零逐渐增大,抽运功率为96mW时,实现了脉冲簇输出。当抽运功率增加到108mW时,形成了稳定的锁模脉冲输出,且锁模脉冲在50μs范围内很稳定,基频锁模重频为18.0MHz,与腔长相匹配。利用带宽为8GHz高速示波器测得锁模脉冲宽度为130ps。图 2a图 2b分别为锁模脉冲序列图及单脉冲图。当抽运功率增加到168mW时,锁模脉冲变得不稳定,随后演化为稳定的2阶谐波锁模脉冲。

      Figure 2.  a—mode-locked pulse sequence diagram b—single pulse diagram

      图 3为可调谐锁模光纤激光器的输出光谱图。在腔内无偏振控制器及可调谐器件的前提下,当抽运功率增加到145mW时,通过改变光纤跳线端面至SESAM的距离,实现了输出波长在1029.5nm~1042.7nm之间的稳定可调谐,调谐范围为13.2nm。实验中所用的光谱仪为YOKOGAWA AQ6373-10-H,测量分辨率为0.02nm。

      Figure 3.  Output spectrum of tunable mode-locked fiber laser (tuning range of 11.2nm)

      实验过程中,利用圆形光纤接头/微凸球面研磨抛光(ferrule connector/physical connection, FC/PC)跳线接头将SESAM接入环形腔中,通过改变FC/PC光纤端面距SESAM的距离,可获得调谐范围内不同波段的波长输出。随着光纤端面距SESAM的距离从5mm减小到零,锁模阈值从120mW降低至108mW,输出波长向1029nm短波长方向移动,这是增益与损耗共同作用的结果。此外,波长为1036nm时,随着抽运功率从108mW增加到166mW,锁模脉冲的脉宽从132ps展宽到192ps,谱宽从1.24nm增加到2.07nm,如图 4所示。这主要是因为全正色散锁模激光腔中,随着抽运功率的增加,腔内功率增加,自相位调制效应增强,这就导致了光谱的展宽,同时在全正色散系统中,随着光脉冲在光纤中的不断传输,也会导致脉冲展宽。

      Figure 4.  Changes of spectral width and pulse width with pump power

      图 5是输出功率随抽运功率的变化关系。可见输出功率随抽运功率的增加呈线性增加,最大输出功率为1.13mW。斜率效率低主要是由于腔内损耗过大和输出耦合比导致,后期作者会对腔进行优化以获得更大的斜率效率及输出功率。

      Figure 5.  Relationship between pump power and output power

      图 6为锁模脉冲的频谱图。锁模脉冲的信噪比为44dB, 实验中所用频谱分析仪为安捷伦的E4407B,测量范围为9kHz~26.5GHz,测量分辨率采用10kHz。

      Figure 6.  Frequency spectrum of mode-locked pulse

    • 搭建了基于半导体可饱和吸收镜(SESAM)的环形腔可调谐掺镱光纤激光器,获得了稳定的锁模脉冲输出,重复频率为18.0MHz,脉冲宽度为130ps,在腔内无偏振控制器及可调谐器件的前提下,通过改变FC/PC光纤端面距SESAM的距离,实现输出波长在1029.5nm~1042.7nm之间稳定可调谐,调谐范围13.2nm,锁模脉冲信噪比为44dB,这种实现可调谐输出的方式节约器件成本,有很重要的研究意义。

参考文献 (19)

目录

    /

    返回文章
    返回