高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤差分相移键控的色散补偿方案的研究

申静 李俊奇

引用本文:
Citation:

基于光纤差分相移键控的色散补偿方案的研究

    作者简介: 申静(1984-), 男, 讲师, 现主要从事全光波长变换、全光逻辑信号处理等方面的研究。E-mail:429795043@qq.com.
  • 中图分类号: O436.3

Study on dispersion compensation schemes based on DPSK of fiber

  • CLC number: O436.3

  • 摘要: 为了研究光差分相移键控(DPSK)调制格式在光纤高速传输系统中的色散补偿, 利用色散补偿光纤(DCF)的色散补偿原理, 对40Gbit/s光纤传输系统进行色散补偿, 分析了40Gbit/s单通道光纤传输系统中3种DPSK调制格式信号的频谱特性; 仿真了3种码型的色散容忍度以及3种调制格式在考虑光纤的非线性下的色散补偿方案。结果表明, 光非归零码差分相移键控(NRZ-DPSK)信号具有最好的色散容忍度, 但其受非线性的影响比较大; 33%归零码差分相移键控(33%RZ-DPSK)信号的色散容忍度差, 但其色散补偿后的效果优于NRZ-DPSK; 而载波抑制归零码差分相移键控信号对色散和非线性效应都有较好的抑制; 3种DPSK调制格式均在对称补偿2方案中色散补偿的效果最佳。此仿真研究对光DPSK信号在光纤中的色散补偿具有参考意义。
  • Figure 1.  Spectrum of NRZ-DPSK

    Figure 2.  Spectrum of 33% RZ-DPSK

    Figure 3.  Spectrum of CSRZ-DPSK

    Figure 4.  Principles of three DPSK modulation formats

    Figure 5.  Simulation model of dispersion compensation system

    Figure 6.  Relationship between Q value and SMF distance of three different pattern signals

    Figure 7.  Q value of NRZ-DPSK as a function with the increasing input power

    Figure 8.  Q value of 33%RZ-DPSK as a function with the increasing input power

    Figure 9.  Q value of CSRZ-DPSK as a function with the increasing input power

    Figure 10.  Relationship between Q value and distance of three different modulation formats in optimal power and compensation mode

  • [1]

    FAN Zh, GUANG W Q, ZHOU H, et al. Research on dispersion compensation for OFDM signal fiber transmission [J]. Laser Technology, 2011, 35(1):112-116(in Chinese).
    [2]

    CAO X. Optimization of dispersion compensation in optical fiber communication systems[J]. Laser Technology, 2014, 38(1):101-104(in Chinese).
    [3]

    WANG X D, LI S W, MIAO Sh G, et al. Evolution and compression of self-similar pulse-pairs in dispersion decreasing fiber [J]. Laser Technology, 2014, 38(4):533-537 (in Chinese).
    [4]

    CAI J, ZHANG L, ZHAO Y J, et al. Dispersion management scheme of quasi-linear optical transmission system [J]. Chinese Journal of Quantum Electronics, 2015, 32(3):378-384 (in Chinese).
    [5]

    MAO X R, ZHANG J H, ZHAO Q. Combined scheme research on static and dynamic dispersion compensation based on Optisystem [J]. Journal of Applied Optics, 2015, 36(6):888-892 (in Chinese). doi: 10.5768/JAO201536.0602002
    [6]

    XIE L N, CAO L, ZHANG L, et al. Techniques for Kerr nonlinearity compensation in fiber communication systems [J]. Laser & Optoelectronics Progress, 2019, 56(6):060002 (in Chinese).
    [7]

    AN Y D, WANG J F, ZHANG Ch X, et al. The excitation and propagation of high-amplitude pulses in nonlinear dispersion-decreasing fiber [J]. Journal of Quantum Optics, 2016, 22(2):140-147(in Chinese).
    [8]

    CAO W H, WANG Y, LIU S H. Dispersion and nonlinearity compensation in optical fiber communication systems by optical phase conjugation incorporated pulse prechirp[J]. Acta Optica Sinica, 2012, 32(9):0906005(in Chinese). doi: 10.3788/AOS201232.0906005
    [9]

    WANG X B, WANG Y L, YANG Y B, et al. Comparison of OOK transmission performance in different FBG dispersion compensation structures [J]. Laser & Infrared, 2017, 47(1):87-91(in Chinese).
    [10]

    LIU X L, XIONG X J. Performance analysis of photoelectric dispersion compensation technology based on optisystem[J]. Electronic Measurement Technology, 2017, 40(11):114-119(in Chinese).
    [11]

    JIANG T, ZHANG K F, WANG Y X, et al. Research of dispersion compensation for 40Gb/s metro network based on optisystem[J]. Laser Journal, 2016, 37(9):27-30(in Chinese).
    [12]

    ZHANG X, XU H Y, NIU H G, et al. Comparison of two new modulation format in optical fiber communication system[J]. Optical Communication Technology, 2008, 32(9):9-12(in Chinese).
    [13]

    HE Zh. Research on advanced modulation scheme in high speed optical communication system[D].Wuhan: Huazhong University of Science and Technology, 2011: 24-35(in Chinese).
    [14]

    WANG Zh X, TAO L, HUANG X X, et al. Applications of advanced modulation formats in short-range optical communication systems[J]. Study on Optical Communications, 2014(3):11-14(in Chinese).
    [15]

    HUI Zh Q, ZHANG J G. Recent progress in all-optical NRZ-to-RZ format conversion[J]. Laser & Optoelectronics Progress, 2012, 49(6):060003(in Chinese).
    [16]

    ZHOU W T, CUI L M, WANG X, et al. Ultra-long span unrepeatered fiber optical communication system with nonlinear compensation algorithm[J]. Study on Optical Communications, 2018(4):14-17(in Chinese).
    [17]

    LI M X, CHEN H, ZHANG Y L, et al. The realization of ultra-long distance transmission on G.652 optical fiber with PMD-QPSK and coherent detection techniques [J]. Designing Techniques of Posts and Telecommunications, 2011(11):18-20(in Chinese).
    [18]

    AGRAWAL G P. Nonlinear fiber optics[M]. New York, USA: Academic Press, 2014:5-56.
    [19]

    PENG W J, PAN W, YAN L Sh, et al. Optical generation of microwave signals with multiple modulation formats based on Mach-Zehnder modulators [J]. Journal of Optoelectronics·Laser, 2017, 28(11):1198-1204 (in Chinese).
    [20]

    XU K, ZHOU G T, WU L, et al. Comparisons of high speed optical modulation formats using LiNbO3 optical waveguide modulators[J]. Journal of Beijing University of Posts and Telecommunications, 2004, 27(4):50-54(in Chinese).
    [21]

    YING X Y, XU T F, LIU T J, et al. New method for generation of RZ/CSRZ-DQPSK signals based on MZM[J]. Infrared and Laser Engineering, 2012, 41(3):755-758(in Chinese).
  • [1] 曹雪 . 光纤通信系统色散补偿方案的优化. 激光技术, 2014, 38(1): 101-104. doi: 10.7510/jgjs.issn.1001-3806.2014.01.022
    [2] 周志强唐余亮谢崇进 . 色散补偿光纤传输系统的最佳补偿方案. 激光技术, 2000, 24(5): 265-269.
    [3] 范哲温广倩周慧肖江南陈林 . 光纤OFDM系统中的色散补偿技术研究. 激光技术, 2011, 35(1): 112-116. doi: 10.3969/j.issn.1001-3806.2011.01.031
    [4] 吴维丽邱琪 . 高阶模补偿单模光纤色散技术研究. 激光技术, 2004, 28(3): 303-305,311.
    [5] 王润轩 . 初始啁啾补偿光纤色散效应的数值研究. 激光技术, 2005, 29(1): 109-112.
    [6] 王润轩 . 色散补偿双芯光子晶体光纤的数值研究. 激光技术, 2008, 32(6): 576-578,589.
    [7] 龙海陈林 . 高速光通信偏振模色散补偿前馈信号提取方法. 激光技术, 2008, 32(5): 484-486.
    [8] 赵朝锋卢洵罗少鹏 . 色散补偿准光孤子传输特性数值分析. 激光技术, 2007, 31(1): 15-17.
    [9] 李丹饶云坤凌福日 . 基于太赫兹相干层析成像系统色散补偿的研究. 激光技术, 2017, 41(6): 779-783. doi: 10.7510/jgjs.issn.1001-3806.2017.06.002
    [10] 李琳蔡海文赵岭方祖捷陈高庭 . 动态色散补偿技术的研究进展. 激光技术, 2002, 26(3): 194-197.
    [11] 何琼王晶 . 色散管理孤子的传输特性. 激光技术, 2002, 26(5): 367-369,372.
    [12] 汪徐德李素文苗曙光姜恩华 . 色散渐减光纤中自相似脉冲对的演化和压缩. 激光技术, 2014, 38(4): 533-537. doi: 10.7510/jgjs.issn.1001-3806.2014.04.019
    [13] 叶德茂谢利民陈晶 . 跟踪误差补偿下星地光通信地面模拟实验分析. 激光技术, 2012, 36(3): 346-348.
    [14] 李建平罗斌潘炜卢静王欣罗广军 . 常规DSF光纤参变放大器的带宽拓宽研究. 激光技术, 2007, 31(4): 337-340.
    [15] 朱永琴田二林 . 基于光环形器的光传送网通信偏振模色散抑制. 激光技术, 2018, 42(5): 699-703. doi: 10.7510/jgjs.issn.1001-3806.2018.05.021
    [16] 龙海徐英鹏陈林 . 偏振模色散补偿的2种反馈控制信号特性比较. 激光技术, 2008, 32(6): 655-658.
    [17] 贺成罗风光李斌 . 基于射频信号2阶零功率的链路色散测量技术. 激光技术, 2017, 41(2): 169-173. doi: 10.7510/jgjs.issn.1001-3806.2017.02.004
    [18] 王梓骁罗风光李斌胡杭听杨帅龙 . 基于脉冲位置调制系统的偏振模色散监测方案. 激光技术, 2018, 42(1): 1-4. doi: 10.7510/jgjs.issn.1001-3806.2018.01.001
    [19] 曾仁芬王英连 . 色散和非线性对异步光码分多址系统的影响. 激光技术, 2011, 35(5): 705-707,711. doi: 10.3969/j.issn.1001-3806.2011.05.034
    [20] 廖洲一刘敏钱燕何丁丁简多 . 八角格子色散补偿光纤. 激光技术, 2013, 37(4): 506-510. doi: 10.7510/jgjs.issn.1001-3806.2013.04.020
  • 加载中
图(10)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  193
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-08
  • 录用日期:  2018-12-07
  • 刊出日期:  2019-09-25

基于光纤差分相移键控的色散补偿方案的研究

    作者简介: 申静(1984-), 男, 讲师, 现主要从事全光波长变换、全光逻辑信号处理等方面的研究。E-mail:429795043@qq.com
  • 沈阳工业大学 信息科学与工程学院, 沈阳 110870

摘要: 为了研究光差分相移键控(DPSK)调制格式在光纤高速传输系统中的色散补偿, 利用色散补偿光纤(DCF)的色散补偿原理, 对40Gbit/s光纤传输系统进行色散补偿, 分析了40Gbit/s单通道光纤传输系统中3种DPSK调制格式信号的频谱特性; 仿真了3种码型的色散容忍度以及3种调制格式在考虑光纤的非线性下的色散补偿方案。结果表明, 光非归零码差分相移键控(NRZ-DPSK)信号具有最好的色散容忍度, 但其受非线性的影响比较大; 33%归零码差分相移键控(33%RZ-DPSK)信号的色散容忍度差, 但其色散补偿后的效果优于NRZ-DPSK; 而载波抑制归零码差分相移键控信号对色散和非线性效应都有较好的抑制; 3种DPSK调制格式均在对称补偿2方案中色散补偿的效果最佳。此仿真研究对光DPSK信号在光纤中的色散补偿具有参考意义。

English Abstract

    • 随着人类社会的不断进步,21世纪以来,互联网技术行业蓬勃发展,特别是近些年微博、微信、自媒体的出现,使得通信中需要传输的信息量成倍的增加。光纤通信以自身传输速度快并且稳定,适合长距离传输的优势在如今的通信中占主导地位。

      限制光纤传输性能的因素主要有光纤的色散[1-5]和光纤的非线性效应[6-7]。对于光纤的色散可以用色散补偿技术来解决,像预啁啾补偿法[8]、光纤光栅补偿技术[9-10]和色散补偿光纤(dispersion compensation fiber, DCF)技术等[11]

      另外,近些年,对光的新型调制格式[12-14]的研究越来越多,有的通过码型的改变来改善传输性能[15],有的可以抑制光纤的非线性效应[16],高阶的调制格式[17]可以增加光纤的传输速率。

      本文中就光差分相移键控(differential phase shift keying,DPSK)调制格式的色散补偿光纤的补偿方案进行了讨论。仿真了非归零码-差分相移键控(non-return to zero code differential phase shift keying,NRZ-DPSK)、33%归零码-差分相移键控(33% return zero code differential phase shift keying,33%RZ-DPSK)和载波抑制归零码-差分相移键控(carrier suppressed to zero code differential phase shift keying,CSRZ-DPSK)这3种DPSK信号的DCF色散补偿方案,并作了对比。

    • 根据光脉冲在单模光纤内传输的非线性薛定谔方程[18],若不考虑单模光纤的损耗(即α=0):

      $ \mathrm{i} \frac{\partial A}{\partial z}+\frac{\mathrm{i} \alpha}{2} A-\frac{\beta_{2}}{2} \frac{\partial^{2} A}{\partial T^{2}}+\gamma|A|^{2} A=0 $

      (1)

      式中,A为脉冲包络的慢变振幅,z是光脉冲传输的距离,α是衰减系数,γ是非线性参量,T是随脉冲以群速度移动的参考系中的时间,β2是群速度色散系数,γ|A|2A项是光纤的非线性效应。群速度色散系数β2与色散系数D的关系如下:

      $ D = - 2{\rm{\mathtt{π}}}c{\beta _2}/{\lambda ^2} $

      (2)

      式中,D是色散系数,c是光速,λ是波长。

      利用下式归一化振幅:

      $ A(z, \tau)=\sqrt{P_{0}} \exp (-\alpha z / 2) U(z, \tau) $

      (3)

      式中,P0是入射脉冲的峰值功率,U是归一化振幅,τT对初始脉冲宽度T0的归一化时间。将(3)式代入(1)式得:

      $ \mathrm{i} \frac{\partial U}{\partial z}=\frac{\operatorname{sgn}\left(\beta_{2}\right)}{2 L_{\mathrm{d}}} \frac{\partial^{2} U}{\partial \tau^{2}}-\frac{\exp (-\alpha z)}{L_{\mathrm{NL}}}|U|^{2} U $

      (4)

      式中,Ld=T02/|β2|为色散长度, LNL=1/(γP0)为非线性长度。

      令(1)式中的γ=0,即不考虑传输中非线性效应, 再利用(3)式归一化振幅得:

      $ \mathrm{i} \partial U / \partial z=\left(\beta_{2} / 2\right)\left(\partial^{2} U / \partial T^{2}\right) $

      (5)

      对(5)式进行傅里叶变换得:

      $ \partial \widetilde{U} / \partial z=\mathrm{i} \beta_{2} \omega^{2} \widetilde{U} / 2 $

      (6)

      式中,${\tilde U}$是U的傅里叶变换,ω是角频率。其解为:

      $ \widetilde{U}(z, \omega)=\widetilde{U}(0, \omega) \exp \left(\frac{\mathrm{i}}{2} \beta_{2} \omega^{2} z\right) $

      (7)

      那么,有:

      $ \begin{array}{*{20}{c}} {U(z, T) = \frac{1}{{2{\rm{\mathtt{π}}}}}\int_{ - \infty }^\infty {\rm{ }} \tilde U(0, \omega ) \times }\\ {\exp \left( {\frac{{\rm{i}}}{2}{\beta _2}{\omega ^2}z + {\rm{i}}\omega T} \right){\rm{d}}\omega } \end{array} $

      (8)

      最终光纤的色散效应会使信号脉冲展宽。而色散补偿技术利用了上式的线性特性。

      DCF色散补偿技术有以下方式:前补偿、后补偿和对称补偿。对于由两段光纤组成的色散补偿方式,色散表达式为:

      $ \begin{array}{*{20}{c}} {U\left( {{L_{\rm{m}}}, T} \right) = \frac{1}{{2{\rm{\mathtt{π}}}}}\int_{ - \infty }^\infty {\rm{ }} \tilde U(0, \omega )\exp \left[ {\frac{{\rm{i}}}{2}{\omega ^2} \times } \right.}\\ {\left. {\left( {{\beta _{21}}{L_1} + {\beta _{22}}{L_2}} \right) + {\rm{i}}\omega T} \right]{\rm{d}}\omega } \end{array} $

      (9)

      式中, Lm=L1+L2是光脉冲信号传输的距离,β21β22分别为第1段光纤的群速度色散系数和第2段光纤的群速度色散系数;L1L2分别为第1段光纤的长度和第2段光纤的长度。显然,色散补偿就是让接收的光脉冲与发射的光脉冲一致,即U(Lm, T)=U(0, T),所以色散补偿的条件为:

      $ {\beta _{21}}{L_1} + {\beta _{22}}{L_2} = 0 $

      (10)

      代入(2)式可得:

      $ {D_1}{L_1} + {D_2}{L_2} = 0 $

      (11)

      式中,D1D2分别是第1段光纤的色散系数和第2段光纤的色散系数。

    • 对于光纤通信中的新型调制格式,频域特性分析对于信号质量的分析有关键作用。

      光纤通信中的NRZ-DPSK信号、占空比为33%的RZ-DPSK信号以及CSRZ-DPSK信号的频谱图分别如图 1图 2图 3所示。

      Figure 1.  Spectrum of NRZ-DPSK

      Figure 2.  Spectrum of 33% RZ-DPSK

      Figure 3.  Spectrum of CSRZ-DPSK

      图 1图 2可以看出,40Gbit/s的NRZ-DPSK的频谱主瓣宽度大约是80GHz,而同样传输速率的33%RZ-DPSK的频谱主瓣宽度大约是240GHz。显然后者的频谱宽度更宽,大约是前者的3倍。这是由于33%RZ-DPSK信号时域上的脉冲宽度比NRZ-DPSK信号更窄,所以它在频域上的频谱宽度更宽。CSRZ-DPSK的占空比是66%,介于NRZ-DPSK与33%RZ-DPSK之间,所以其频谱宽度也介于它们之间,如图 3所示。

      对于非线性效应来说,NRZ-DPSK信号的能量最大,受非线性影响较严重,因此不适合长距离传输;33%RZ-DPSK信号能量最小,受非线性影响较小,但其受色度色散(chromatic dispersion,CD)和偏振模色散(polarization mode dispersion,PMD)的影响较大;CSRZ-DPSK信号的CD和PMD的影响较小,可有效抑制码间干扰,由于其占空比为66%(小于NRZ-DPSK的100%),故其非线性效应比NRZ-DPSK信号小。

    • 在基于DCF的光纤DPSK色散补偿系统仿真中,采用以下4种方案:前补偿、后补偿、对称补偿1和对称补偿2。

      NRZ-DPSK, 33%RZ-DPSK和CSRZ-DPSK这3种调制格式的产生原理示意图如图 4所示。激光二极管(laser diode,LD)产生连续光信号,在相位调制器(phase modulator,PM)上进行光调制,由NRZ绝对码与延迟一个周期Tc的反馈信号相异或(exclusive OR,XOR)产生的相对码进行数据加载,这个相位调制器可以采用双驱动马赫-曾德尔调制器[19](Mach-Zehnder modulator,MZM)。连续光信号经过相位调制器调制后,产生NRZ-DPSK信号,然后经过一个MZM进行信号幅度切割产生33%RZ-DPSK或CSRZ-DPSK,具体产生哪种信号是通过修改时钟信号以及MZM的偏置电压来控制[20-21]

      Figure 4.  Principles of three DPSK modulation formats

      色散补偿系统的仿真模型如图 5所示。Tx是发射端,用于产生NRZ-DPSK, 33%RZ-DPSK和CSRZ-DPSK 3种调制格式的光信号;Rx是接收端,负责光信号的解调和分析信号的误比特率和Q值。中间是一个循环结构,其中有单模光纤(single mode fiber,SMF),色散补偿光纤DCF和掺铒光纤放大器(erbium doped fiber amplifier,EDFA)。系统仿真包括4种补偿方案:前补偿(即DCF+EDFA+SMF+EDFA),后补偿(即SMF+EDFA+DCF+EDFA),对称补偿1(即DCF+EDFA+SMF+EDFA+DCF+EDFA),对称补偿2(即SMF+EDFA+DCF+EDFA+SMF+EDFA),在图 5中分别标为①,②,③,④。

      Figure 5.  Simulation model of dispersion compensation system

      整个系统的传输速率为Rb=40Gbit/s,伪随机序列长度为128bits,每bit采样32次,激光器光源的频率是193.1THz。从发射端到接收端的总传输距离为360km,4种方案对应的SMF的长度与DCF的长度如图 5所示。接收端用眼图分析仪分析各个信号的Q值与误比特率。另外,SMF的参量有:衰减系数为0.2dB/km,色散系数D=16.75ps/nm/km,色散斜率为0.075ps/nm2/km,偏振模色散群延迟为0.2ps/km,有效纤芯面积为80μm2。DCF的参量有:衰减系数为0.5dB/km,色散系数D=-83.75ps/nm/km,色散斜率为-0.3ps/nm2/km,偏振模色散群延迟为0.2ps/km,有效纤芯面积为22μm2。EDFA的增益根据需要为10dB或5dB或2.5dB。

    • 系统仿真了在只考虑色散的情况下NRZ-DPSK、33%RZ-DPSK和CSRZ-DPSK信号在经过10km到80km的SMF后的Q值,由图 6可以看出3种不同码型信号的色散容忍度。其中,NRZ-DPSK信号的Q值在20km后最佳且平坦,抗色散能力强,色散容忍度大;33%RZ-DPSK信号随距离10km到30km的增加而Q值急剧下降,表现出最低的色散容忍度;而CSRZ-DPSK信号的Q值在25km~65km之间介于NRZ-DPSK和33%RZ-DPSK信号之内,表现出色散容忍度介于NRZ-DPSK信号与33%RZ-DPSK信号之内。

      Figure 6.  Relationship between Q value and SMF distance of three different pattern signals

      NRZ-DPSK的Q值关于功率的折线图如图 7所示,包括NRZ-DPSK调制格式的前补偿、后补偿、对称补偿1和对称补偿2共4种方案。由图可知,在-10dBm到-6dBm之间,前补偿、后补偿与对称补偿1的Q值几乎一致。从-3dBm开始前3种方案的Q值差距逐渐增大。其中,前补偿和后补偿的Q值从输入功率从-10dBm~-3dBm的变化过程中增加后逐渐减小。在-4dBm ~ 10dBm变化过程中后补偿的Q值略大于前补偿的Q值,对称补偿1大于后补偿的Q值。另外,仿真结果表明,对称补偿2的补偿效果最好,从-10dBm开始,其Q值就领先于前补偿、后补偿和对称补偿1的Q值,最佳的Q值在功率等于2dBm时达到22.3左右,然后逐渐下降。

      Figure 7.  Q value of NRZ-DPSK as a function with the increasing input power

      33%RZ-DPSK的Q值随功率的变化关系如图 8所示。前补偿、后补偿和对称补偿1这3种方案在-10dBm~-1dBm之间的Q值几乎一致,但前补偿与后补偿只增加到1dBm,然后逐渐下降,而对称补偿1和对称补偿2则增加到5dBm后快速下降。在2dBm~12dBm区间,对称补偿1明显优于前补偿和后补偿两种方案。对称补偿2的方案在-10dBm~12dBm之间的Q值对比其余3种方案有明显优势。与NRZ-DPSK不同的是,最佳的Q值是在功率约等于5dBm时。

      Figure 8.  Q value of 33%RZ-DPSK as a function with the increasing input power

      CSRZ-DPSK的4种补偿方案的Q值随功率变化的折线图如图 9所示。在CSRZ-DPSK的调制格式下,对称补偿2方案具有最佳补偿效果,Q值可达到42左右。在输入功率低于-6dBm时,前补偿与后补偿方案几乎一致;从-6dBm~-1dBm时,前补偿优于后补偿;从-2dBm~10dBm时,对称补偿1优于前补偿与后补偿。同样地,对称补偿2的方案总体上有明显优势。

      Figure 9.  Q value of CSRZ-DPSK as a function with the increasing input power

      图 10表示在3种调制格式最佳的功率和补偿方案的情况下,Q值随距离的变化。其中NRZ-DPSK,33%RZ-DPSK,CSRZ-DPSK 3种调制格式的输入功率选择3dBm,补偿方案选择对称补偿2方案,距离从300km~840km,每隔60km仿真一次。由图可以看出,NRZ-DPSK的效果是3种调制格式中最差的;在300km~360km左右的一段距离中,CSRZ-DPSK的Q值高于另两种调制格式;在360km~840km左右的距离中,33%RZ-DPSK的补偿效果最佳。

      Figure 10.  Relationship between Q value and distance of three different modulation formats in optimal power and compensation mode

    • 本文中首先介绍了色散补偿的原理,分析了3种调制格式信号的频谱特性,然后仿真了3种码型的色散容忍度情况,最后分别仿真了3种调制格式在考虑光纤的非线性效应下的色散补偿方案,并用Q值来评估传输性能。结果表明:NRZ-DPSK, CSRZ-DPSK与33%RZ-DPSK信号在对称补偿2方案中有最好的色散补偿效果;并且当距离在300km~360km时,CSRZ-DPSK的补偿效果优于33%RZ-DPSK;在360km~840km时,33%RZ-DPSK优于CSRZ-DPSK。

参考文献 (21)

目录

    /

    返回文章
    返回