高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆形周期介质内艾里光束的传输特性

靳龙 张兴强

引用本文:
Citation:

圆形周期介质内艾里光束的传输特性

    作者简介: 靳龙(1989-), 男, 讲师, 主要从事激光光学、光电技术的研究和教学工作。E-mail:crazyjinlong@163.com.
  • 基金项目:

    湖北省教育厅基金资助项目 B2017085

  • 中图分类号: TN241

Characteristics of Airy beam propagating in circular periodic media

  • CLC number: TN241

  • 摘要: 为了研究无衍射光波在特异材质内的传输特性,实现更优良的光波通信,将传统右手材料和双负折射率材料相结合,提出了一种轴向阶跃变化周期圆形介质结构。基于广义惠更斯-菲涅耳光学积分公式,结合光学传输矩阵,分析了艾里光束在这种传输媒质中出射表面光强分布特性和侧面传输光强分布图;分析了负折射率参量对这类光波演变的影响及其补偿机理;分析了实现输出光波完美还原时,负折射率大小同介质单元长度的定量关系。结果表明,当介质孔径逐渐减小时,有限艾里光束衍射效应越来越严重,并且出射光强外形轮廓逐渐从艾里光束过渡到高斯光束;当双负折射率材料的折射率nl的绝对值大于右手材料的折射率nr时,出射表面实现光波完美还原的双负折射率材料单元层越长,反之则越短。该研究对分析周期或准周期轴向阶跃变化的圆形平板介质光波通信是有帮助的。
  • Figure 1.  Wave propagation in circular periodic media

    Figure 2.  Intensity distribution of FAiB with different aperture sizes

    Figure 3.  Side transmission view in periodic and quasi-periodic circular media

    Figure 4.  Relationship between negative refractive index nl and DNM unit length L

  • [1]

    SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21):213901. doi: 10.1103/PhysRevLett.99.213901
    [2]

    BERRY M V, BALAZS N L. Nonspreading wave packets[J]. American Journal of Physics, 1998, 47(3):264-267.
    [3]

    VOLOCHBLOCH N, LEREAH Y, LILACH Y, et al. Generation of electron Airy beams[J]. Nature, 2013, 494(7437):331-335. doi: 10.1038/nature11840
    [4]

    HALIL T E, EMRE S. Partially coherent Airy beam and its propagation in turbulent media[J]. Applied Physics, 2013, B110(4):451-457.
    [5]

    JIA X L, WANG X O, ZHOU Zh X, et al. Latest progress on chiral negative refractive index metamaterials[J]. Chinese Optics, 2015, 8(4):548-556(in Chinese).
    [6]

    PU M B, WANG Ch T, WANG Y Q, et al. Subwavelength electro-magnetics below the diffraction limit[J]. Acta Physica Sinica, 2017, 66(14):144101(in Chinese).
    [7]

    GRISSÁNCHEZ I, RAS D V, BIRKS T A. The Airy fiber:an optical fiber that guides light diffracted by a circular aperture[J].Optica, 2016, 3(3):1-11.
    [8]

    QUAN X, YANG X. Band rules for the frequency spectra of three kinds of aperiodic photonic crystals with negative refractive index materials[J]. Chinese Physics, 2009, B(12):5313-5325.
    [9]

    XU J, SU A, ZHOU L P, et al. Dual optical filtering function of the photonic crystal made of LHM and RHM[J]. Laser Technology, 2018, 42(4):550-550(in Chinese).
    [10]

    SZTUL H I, ALFANO R R. The poynting vector and angular momentum of Airy beams[J]. Optics Express, 2008, 16(13):9411-9416. doi: 10.1364/OE.16.009411
    [11]

    HENNANI S, EZZARIY L, BELAFHAL A. Radiation forces on a dielectric sphere produced by finite olver-gaussian beams[J]. Optics & Photonics Journal, 2015, 5(12):344-353.
    [12]

    WEI Y, ZHU Y Y. Analysis of phase change of Laguerre-Gaussian vortex beam during propagation[J]. Laser Technology, 2015, 39(5):723-726(in Chinese).
    [13]

    XU S D, FENG Y X. Study on propagation properties of Airy beams through negative index medium[J]. Acta Photonica Sinica, 2015, 44(2):0208002(in Chinese).
    [14]

    VAVELIUK P, MARTINEZMATOS O. Negative propagation effect in nonparaxial Airy beams[J]. Optics Express, 2012, 20(24):26913. doi: 10.1364/OE.20.026913
    [15]

    LIN H, PU J. Propagation of Airy beams from right-handed material to left-handed material[J]. Chinese Physics, 2012, B21(5):221-226.
    [16]

    JIN L, ZHANG X. Propagation properties of airy beam through periodic slab system with negative index materials[J]. International Journal of Optics, 2018, 11(1):1-7.
    [17]

    SHADRIVOV I V, SUKHORUKOV A A, KIVSHAR Y S. Beam shaping by a periodic structure with negative refraction[J]. Applied Physics Letters, 2003, 82(22):3820-3822. doi: 10.1063/1.1579849
    [18]

    XIE X X, WANG S C, WU F T. Diffraction optical field of the Bessel beam through elliptical annular aperture[J]. Acta Physica Sinica, 2015, 64(12):124201(in Chinese).
    [19]

    LIU H, LÜ Y, XIA J, PU X, et al. Propagation of an Airy-Gaussian beam passing through the ABCD optical system with a rectangular aperture[J]. Optics Communications, 2015, 355:438-444. doi: 10.1016/j.optcom.2015.07.017
    [20]

    GU J, YANG P, ZHU Q. Propagation characteristics of Gaussian beams through 2×2 square matrix circular apertures[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(20):1817-1819. doi: 10.1016/j.ijleo.2011.12.061
    [21]

    GHATAK A. Optics[M]. Beijing:Higher Education Press, 2009:67-68(in Chinese).
    [22]

    SHAN C M, SUN H Y, ZHAO Y Zh. Study of far-field interference pattern for coherent Gaussian beams based on Mach-Zehnder interferometer[J]. Laser Technology, 2017, 41(1):113-119(in Chinese).
    [23]

    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966. doi: 10.1103/PhysRevLett.85.3966
  • 加载中
图(4)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  332
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 录用日期:  2018-07-07
  • 刊出日期:  2019-05-25

圆形周期介质内艾里光束的传输特性

    作者简介: 靳龙(1989-), 男, 讲师, 主要从事激光光学、光电技术的研究和教学工作。E-mail:crazyjinlong@163.com
  • 湖北汽车工业学院 理学院 光电科学与技术系, 十堰 442002
基金项目:  湖北省教育厅基金资助项目 B2017085

摘要: 为了研究无衍射光波在特异材质内的传输特性,实现更优良的光波通信,将传统右手材料和双负折射率材料相结合,提出了一种轴向阶跃变化周期圆形介质结构。基于广义惠更斯-菲涅耳光学积分公式,结合光学传输矩阵,分析了艾里光束在这种传输媒质中出射表面光强分布特性和侧面传输光强分布图;分析了负折射率参量对这类光波演变的影响及其补偿机理;分析了实现输出光波完美还原时,负折射率大小同介质单元长度的定量关系。结果表明,当介质孔径逐渐减小时,有限艾里光束衍射效应越来越严重,并且出射光强外形轮廓逐渐从艾里光束过渡到高斯光束;当双负折射率材料的折射率nl的绝对值大于右手材料的折射率nr时,出射表面实现光波完美还原的双负折射率材料单元层越长,反之则越短。该研究对分析周期或准周期轴向阶跃变化的圆形平板介质光波通信是有帮助的。

English Abstract

    • 2007年,SIVILOGLOU等人利用高斯光束经过立方相位调制和傅里叶变换透镜率先发现了有限艾里光束(finite Airy beam, FAiB)[1],从而实验证实了BERRY和BALAZS的理论:在薛定谔方程中存在着一个遵循艾里函数的波包解[2]。自加速、可自愈和近似无衍射是FAiB具有的三大特性[3]。近年来,研究发现,利用FAiB进行大气通信或光纤传输时,大气湍流及传输媒质对这类光波的影响都比传统高斯光束要小得多[4],因而,研究FAiB的传输特性,对于提高通信性能有重要的意义。

      与此同时,随着负折射率材料的产生和发展,传输媒质也发生着深刻的变革。近年来,含负折射率微纳周期材料在通信系统及器件、隐身技术、生物安全成像、生物分子指纹识别和微型谐振腔等方面取得了广泛的应用[5]。相关研究表明,恰当地使用负折射率材料,可以使光波传输突破衍射极限[6],因而,在通信传输媒质中,含负折射率周期材料已成为研究热点,诸如光子晶体光纤等径向周期结构已有大量研究。作者提出了1种轴向阶跃正、负折射率交替变化圆形传输媒质,这类媒质和径向分布光纤及光学薄膜[7]的传光机理有所不同,相关研究表明:由正、负折射率材料交替组成的1维光子晶体,可以实现零有效相位带隙,与传统周期变化轴向光子晶体的布喇格带隙不同,这种带隙的产生源于局域共振机制,它对光波的入射角和极化不敏感, 是一种全方位带隙, 与晶格常数的标度无关且受晶格无序的影响也很小, 带隙可以通过调节两种材料的厚度比值扩展得很宽, 同时能隙的中心几乎不动[8]。这种新型的光子带隙有利于光子晶体向着微型化、集成化的方向延伸,是宽频带全角度反射器、多通道滤波器、高品质因子的小型滤波器、偏振分光器等通信器件的理想媒质[9]。当光波具有良好的单色性时,人们通常聚焦于不同材质内部光强、相位、动量流密度、自旋和轨道角动量以及辐射力的分布情况,这些光学参量的定量研究也已有大量的报道[10-12]。XU等人研究了艾里光束在双负折射率材料(double negative material, DNM)中的傍轴传输规律[13]。VAVELIUK等人研究了非近轴艾里光束的负折射现象[14]。LIN等人研究了艾里光束在正、负折射率介质中的传输特性[15]。作者曾详细研究了含负折射率材料中艾里光波的传输及其补偿机理和损耗机制[16]。但以上研究中,传输介质的几何尺寸在横向均为无穷大,与实际材质有很大区别,另外材料外形为矩形,也与光波通信中常用的圆形孔径有所区别。

      作者利用广义惠更斯-菲涅耳光学积分公式和光学传输矩阵,研究了FAiB在右手材料(right handed material, RHM)和DNM轴向阶跃变化的圆形平板介质内光波的演变特性,探讨了孔径大小对出射横截面FAiB光强分布和侧面传输光强演变的影响,并且分析了在不同负折射率参量下,周期圆形介质内的光波侧面传输图景及补偿机理以及实现输出光波完美还原时,负折射率大小同介质单元长度的定量关系。希望本文中的研究方法和相关结论可以为分析周期或准周期轴向阶跃变化的圆形平板介质光波通信提供理论指导。

    • 轴向阶跃变化周期圆形介质结构中每一单元材质分布如图 1所示。其中左部分代表传统RHM,右部分为负折射率材料,这里选取DNM,其相对介电常数和相对磁导率可以用Drude模型表示[17]。每个DNM和RHM单元长度均为L;DNM和RHM折射率为nlnr

      Figure 1.  Wave propagation in circular periodic media

      在笛卡尔右手坐标系下,FAiB在初始原点O处的电场强度大小为[1, 13, 15]:

      $ E_{1}\left(x_{0}, y_{0}\right)=f_{\mathrm{A}}\left(\frac{x_{0}}{w_{1}}\right) f_{\mathrm{A}}\left(\frac{y_{0}}{w_{2}}\right) \exp \left(\frac{a x_{0}}{w_{1}}+\frac{a y_{0}}{w_{2}}\right) $

      (1)

      式中,x0y0表示入射光波初始位置的横、纵向尺寸;0 < a < 1代表指数截断因子;w1w2分别为xy方向截面光斑尺寸,一般它们和光斑束腰尺寸w0相等;fA()代表艾里函数。当光波在正、负折射率交替变化的轴向阶跃周期介质传输时,圆形的透光率可用圆域函数表示为:

      $ \operatorname{circ}\left(\frac{\sqrt{x^{2}+y^{2}}}{r}\right)=\left\{\begin{array}{l}{1, \left(\sqrt{x^{2}+y^{2}}<r\right)} \\ {0, (\text { other })}\end{array}\right. $

      (2)

      式中,r是孔径。利用有限复高斯函数展开法可将(2)式改为[18]:

      $ T(x, y)=\sum\limits_{h=1}^{N} A_{h}\left\{\exp \left[-\frac{B_{h}}{r}\left(x^{2}+y^{2}\right)\right]\right\} $

      (3)

      式中,N为展开系数,一般取N=10即可满足计算精度要求; AhBh是展开系数, 可以通过计算机优化的方法得到,具体数值见参考文献[19]。当FAiB沿光轴z传输并依次经过各材质单元时,其在圆形周期介质内任意傍轴位置电场强度可由广义惠更斯-菲涅耳积分公式表示为[20]:

      $ \begin{array}{c}{E_{2}(x, y, z)=\left(-\frac{\mathrm{i}}{\lambda B}\right) \exp (\mathrm{i} k z) \iint\limits_{S_{1}} E_{1}\left(x_{0}, y_{0}, 0\right) \times} \\ {T\left(x_{0}, y_{0}\right) \exp \left\{\frac{\mathrm{i} k}{2 B}\left[A\left({x_0}^{2}+{y_0}^{2}\right)+\right.\right.} \\ {D\left(x^{2}+y^{2}\right)-2\left(x_{0} x+y_{0} y\right) ] \} \mathrm{d} x_{0} \mathrm{d} y_{0}}\end{array} $

      (4)

      式中,λ=1.55μm是光波波长,k=2π/λ是其对应波数, S1是入射横截面, T(x0, y0)是在入射横截面上圆孔的近似表达式; ABCD代表光波通过一系列介质单元后,总光学传输矩阵T的各元素,可用下列公式表示[21]:

      $ \begin{array}{c}{\boldsymbol{T}=\left[ \begin{array}{cc}{A} & {B} \\ {C} & {D}\end{array}\right]=} \\ {\left[\boldsymbol{M}\left(n_{\rm l}, n_{\mathrm{r}}\right) \;\boldsymbol{M}(L)\; \boldsymbol{M}\left(n_{\mathrm{r}}, n_{\rm l}\right) \;\boldsymbol{M}(L) \;\boldsymbol{M}\left(1, n_{\mathrm{r}}\right)\right]^{n}}\end{array} $

      (5)

      式中,n表示材料周期数,M(L)代表光波在均匀单一介质传输L距离的传输矩阵, M(nr, nl)为光波从RHM介质进入DNM时,其分界面传输矩阵,类似地,从DNM进入RHM材料分界面的传输矩阵为M(nl, nr)。将(5)式和(3)式代入(4)式,便可得到FAiB在空间域内传输场强的具体形式为:

      $ \begin{array}{c}{E(j, z)=\frac{\mathrm{i} k}{2 B} \exp (-\mathrm{i} k z) \exp \left(D j^{2}\right) \times} \\ {\sum\limits_{h=1}^{10} A_{h}\left[\frac{1}{Q} \exp \left(\frac{q^{2}}{4 Q}\right) \exp \left(\frac{1}{96 {w_0}^{6} Q^{3}}+\right.\right.} \\ {\frac{q}{8 {w_0}^{3} Q^{2}} ) f_{\mathrm{A}}\left(\frac{1}{16 {w_0}^{4} Q^{2}}+\frac{q}{2 w_{0} Q}\right) ]}\end{array} $

      (6)

      式中,j=(x2+y2)0.5,而:

      $ Q=\frac{B_{h}}{r^{2}}+\frac{\mathrm{i} k A}{2 B} $

      (7)

      $ q=\frac{a}{w_{0}}+\frac{\mathrm{i} k}{B} j $

      (8)

      相应FAiB光强分布可由电场强度和它复共轭的乘积求得[22]

    • 为了研究圆形周期介质孔径大小对FAiB光波演变特性的影响,图 2是FAiB分别经过RHM, DNM出射横截表面光强分布图和侧面传输光强分布图随不同数值孔径的变化规律。其中,在侧面传输光强分布图中,箭头为RHM和DNM界面分界线,其它参量选取为w0=0.1mm,a=0.2,光波瑞利尺寸为ZRw02/λ=(k /w02)/2=0.02m,介质长度L=10ZR,RHM介质折射率nr=1.5,光波频率ν=1.94×1014Hz, 电、磁等离子角频率选取为ωpe=ωpm= 2πν×$\sqrt{2.5}$,对应DNM介质折射率为nl=-1.5,周期数n=2。从RHM出射表面的光强分布(见图 2a~图 2d)可以清楚地看出,受孔径形状的调制,FAiB外形轮廓呈圆形状,并且随着孔径r的增加,出射光波主、旁瓣已经逐步显现出来,当r=10mm时,从图 2d可以看出,FAiB已基本实现近似无衍射,主、旁瓣轮廓已可以区分,而当r=0.1mm,即孔径大小和光斑束腰尺寸可比拟时,从图 2a可知,光波外形已和高斯光束无异,并且当光波在RHM继续传输时,FAiB已无法自可愈,因此,当r逐渐减小时,衍射效应对FAiB影响越来越严重,随着r减小,光波在RHM传输时,外形轮廓逐渐从艾里光束过渡到高斯光束。当FAiB途经RHM和DNM交替排列周期结构之后,出射表面光强分布如图 2e~图 2g所示,从中可以看出,DNM可以作为理想凸镜层,实现光波的完美还原,并且随着r的增加,FAiB的旁瓣数量逐渐增多,当r=0.5mm时,从图 2e可见,在xy方向,FAiB各有一旁瓣,而当r=10mm时,不仅在xy方向有众多旁瓣,而且在第三象限也有旁瓣出现。从侧面光强分布(见图 2h~图 2j)可知,FAiB在RHM传输时发生的自弯曲等现象可由临近DNM补偿,使得出射光束回到初始轮廓,如图 2j所示。而当r大小和光斑束腰尺寸可比拟时,从图 2h可知,此时衍射已十分严重,FAiB在RHM传输时的自弯曲现象已无法实现,此时,即使有DNM作为补偿介质,出射光波轮廓也和FAiB大相径庭。

      Figure 2.  Intensity distribution of FAiB with different aperture sizes

    • 由2.1节可知,对于轴向阶跃变化圆形周期介质,当r=0.5mm时,光波传输特性和外形轮廓已能满足通信对FAiB性能的要求,从光波侧面传输图(见图 2h~图 2j)可知,当绝对值函数abs(nl)=nr,并且DNM介质长度和RHM介质长度相等时,在接收横截面上,出射光波光强就回到了初始入射光强轮廓,PENDRY曾利用平面光波电磁理论阐述了在传输媒质中适当地引入负折射率材料,可以实现输出光波的完美还原,即负折射率材料犹如一个完美透镜层,补偿了光波在传统介质正传输时产生的衍射效应,从而显著地提高成像质量[23],这种补偿作用对近似无衍射FAiB也不例外,只是在这类奇异光束中,传输媒质主要起到限制光波自弯曲的作用。但在工艺制作中,RHM和DHM介质折射率很难满足互为相反数,因此,本小节中研究不同nl对FAiB传输特性的影响,其结果如图 3所示。

      Figure 3.  Side transmission view in periodic and quasi-periodic circular media

      其中,电、磁等离子角频率分别选取为ωpe=ωpm=2πν×$\sqrt{3.0}$和ωpe=ωpm=2πν×$\sqrt{2.0}$,对应DNM折射率为nl为-2.0和-1.0,r=0.5mm固定不变,其它参量和图 2一致。从图 3a可知,当负介质折射率nl=-2.0时,FAiB在RHM中传输形成的自弯曲仍会被相邻DNM补偿,使得光波沿逆抛物线轨迹传输,但由于abs(nl)>1.5,因此光波自弯曲在DNM中不能完全被补偿,随着介质周期数增加,出射光波便不能回到初始光强分布轮廓。此时,需要探讨一个问题:每个DNM单元长度多大时,可使FAiB侧面轮廓在每一周期层传输后,其光强分布图沿RHM-DNM分界线轴对称分布?当光波依次经过RHM和DNM时,其光学传输矩阵为:

      $ \begin{array}{cc}{\boldsymbol{T}=\left[ \begin{array}{cc}{A} & {B} \\ {C} & {D}\end{array}\right]=\left[ \begin{array}{cc}{1} & {0} \\ {0} & {n_{\rm l}}\end{array}\right] \times \left[ \begin{array}{cc}{1} & {L} \\ {0} & {1}\end{array}\right] \times} \\ {\left[ \begin{array}{cc}{1} & {0} \\ 0& {n_{\mathrm{r}} / n_{\rm l}}\end{array}\right] \times \left[ \begin{array}{ll}{1} & {L} \\ {0} & {1}\end{array}\right] \times \left[ \begin{array}{cc}{1} & {0} \\ {0} & {1 / n_{\mathrm{r}}}\end{array}\right]}\end{array} $

      (9)

      L=10ZR, nr=1.5, nl=-2.0代入上式,可得矩阵元B的定量大小为:

      $ B=-2 L / 3+4 {\rm{ \mathsf{ π} }} / 93 $

      (10)

      因此,光波在DNM中实现完美还原所需长度为L=13.4ZR图 3b中给出了这种准周期结构内光波传输的仿真结果。对比图 3b图 3a可知,FAiB在每层DNM出射表面都又回到了入射光波轮廓。与图 3a形成鲜明对比的是,当nl=-1.0时,光波实现完美还原所需的DNM长度小于10ZR,因此,当DNM单元长度固定不变,从图 3c可以看出,光波在DNM中传输时,除了补偿其自弯曲外,在剩余材质中再次出现自弯曲,导致光波在下周期出射表面一直弯曲到很远的地方,这时不仅输出中心光强微弱,且输出横截面中心主瓣远远偏离中心原点,因而光束质量很差;同样地,将L=10ZR, nr=1.5, nl=-1.0代入(9)式,则光波在这类结构模型中传输时,光学矩阵元B的定量大小为:

      $ B=-L+4 {\rm{ \mathsf{ π} }} / 93 $

      (11)

      这样,光波在这类介质中实现完美还原所需长度为L=6.7ZR图 3d中描绘了其传输图样,与理论分析结果一致。进一步由应用光学基本原理可知,在傍轴近似下,实现光波完美还原的介质折射率nl和DNM单元长度L之间具有良好的线性关系,其定量拟合关系如图 4所示。

      Figure 4.  Relationship between negative refractive index nl and DNM unit length L

    • 利用广义惠更斯-菲涅耳光学积分公式,结合光学传输矩阵,探究了FAiB在轴向RHM, DNM交替阶跃变化周期圆形介质传输媒质中出射表面光强分布特性和侧面传输光强分布图。结果表明:当介质孔径逐渐减小时,FAiB衍射效应越来越严重,并且出射光外形轮廓逐渐从艾里光束过渡到高斯光束。进一步分析了负折射率参量nl对光波演变的影响及其补偿机理。研究显示,若abs(nl)>nr,出射表面实现光波完美还原的DNM单元层越长; 反之则越短。另外,研究了实现输出光波光强完美还原时,介质折射率nl和DNM单元长度L之间定量关系。以上研究方法和相关结论可以为分析周期或准周期轴向阶跃变化的圆形平板介质光波通信提供理论指导。

      感谢东风通信技术有限公司郭宏工程师在通信媒质发展现状方面的有益探讨。

参考文献 (23)

目录

    /

    返回文章
    返回