高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声波对铝合金激光-电弧复合焊接影响的研究

李忠 刘佳 白陈明 张亚亮 杨玉东

引用本文:
Citation:

超声波对铝合金激光-电弧复合焊接影响的研究

    作者简介: 李忠(1993-), 男, 硕士研究生, 主要从事激光焊接方面的研究.
    通讯作者: 刘佳, liujia@cust.edu.cn
  • 中图分类号: TG456.9

Study on effect of ultrasonic on laser-arc hybrid welding of aluminum alloy

    Corresponding author: LIU Jia, liujia@cust.edu.cn ;
  • CLC number: TG456.9

  • 摘要: 为了解决传统铝合金焊接接头气孔数量多、晶粒粗大及力学性能差的问题,以5083-O铝合金为研究对象,进行了超声振动辅助激光-电弧复合焊接试验。研究了超声振动对铝合金焊缝气孔数量、微观组织及抗拉强度的影响,并探讨了超声波在焊接熔池中对气孔排出和组织细化的作用机理。结果表明,超声辅助焊接的焊缝气孔数量显著降低,主要归功于超声空化效应降低了铝合金熔体中的氢浓度,并促进气泡的快速逸出;超声波的空化效应和声流效应改变了熔体的压力、温度以及流动状态,使熔池的结晶条件发生改变,从而通过提高形核率和破碎枝晶细化了焊缝晶粒组织;施加超声振动后的焊缝平均拉伸强度由242.9MPa提高到270MPa,且断裂位置发生在热影响区,主要是因为焊缝区气孔减少和组织细化。此研究对深入理解铝合金焊接过程中缺陷形成机理及提高接头强度是有帮助的。
  • Figure 1.  Physical diagram of ultrasonic equipment

    Figure 2.  Schematic diagram of ultrasonic principle

    Figure 3.  Physical diagram of welding device

    Figure 4.  Diagram of ultrasonic assisted laser-arc hybrid welding

    Figure 5.  Solubility of hydrogen in aluminum alloy

    Figure 6.  Porosity morphology of aluminum alloy weld

    Figure 7.  Weld macroscopic morphology

    Figure 8.  X-ray inspection photos of welds

    Figure 9.  Microstructure of arc action zone of weld

    Figure 10.  Microstructure of laser action zone of weld

    Figure 11.  Schematic diagram of the dynamic process of cavitation bubbles

    Figure 12.  Welded joint tensile strength

    Figure 13.  Welded joint fracture position

    Figure 14.  Tensile fracture morphology

    Table 1.  Chemical composition (mass fraction) of 5083 aluminum alloy and filler wire

    material Si Fe Cu Mn Mg Cr Zr Zn Ti Al
    5083-O 0.0040 0.0040 0.0010 0.004~0.01 0.04~0.049 0.0005~0.0025 0.0025 0.0015 balance
    ER5087 0.00022 0.0015 0.00005 0.009 0.04~0.049 0.00082 balance
    下载: 导出CSV

    Table 2.  Parameters of ultrasonic assisted laser-MIG hybrid welding

    processing parameters value
    laser power P 4kW
    arc current I 220A
    arc voltage U 21.2V
    defocusing distance Δf -2mm
    heat source distance DLA 3mm
    numerical control table movement speed v 0.5m/min
    shielding gas flow rate fg 30L/min
    MIG shielding gas flow rate ft 15L/min
    下载: 导出CSV
  • [1]

    WU Sh Ch, ZHU Z T. Laser welding and performance evaluation of aluminum alloy[M]. Beijing:Defense Industry Press, 2014:13-25(in Chinese).
    [2]

    LI Zh, WANG T, LIU J, et al. Effect of process parameters on corrosion resistance of aluminum alloy hybrid welded joints[J]. Laser Technology, 2019, 43(2):189-194(in Chinese).
    [3]

    DING J K, WANG D P, WANG Y, et al. Effect of post weld heat treatment on properties of variable polarity TIG welded AA2219 aluminum alloy joints[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5):1307-1316. doi: 10.1016/S1003-6326(14)63193-9
    [4]

    HE Y, TANG X, ZHU C, et al. Study on insufficient fusion of NG-GMAW for 5083 Al alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9/12):4303-4313.
    [5]

    SONG X H, JIN X Zh, CHEN Sh Q, et al. Progress of laser-arc hybrid welding and its applications in automotive body manufacture[J]. Laser Technology, 2015, 39(2):259-265(in Chinese).
    [6]

    WANG H Y, SUN J, LIU L M. Formation and control mechanism of porosity in 6061-T6 aluminum alloy laser arc hybrid high speed welding[J]. Chinese Journal of Lasers, 2018, 45(3):0302001(in Chinese).
    [7]

    XU G X, ZHANG W W, LIU P, et al. Numerical analysis of fluid flow in molten pool of laser GMAW composite heat source welding[J]. Journal of Metals, 2015, 51(6):713-723(in Chinese).
    [8]

    XU Ch Y, LIU Sh Y, ZHANG H, et al. Droplet transfer characteristics and force analysis of laser arc composite welding process[J]. Journal of Mechanical Engineering, 2018, 54(6):154-161(in Chinese). doi: 10.3901/JME.2018.06.154
    [9]

    YANG Y D, LIU J, SHI Y, et al. Effect of nozzle shape on forming quality of aluminum alloy composite welding joint[J]. Laser Technology, 2018, 42(2):222-228(in Chinese).
    [10]

    LIU J, LI Zh, SHI Y, et al. Effect of laser-arc distance on surface flow of laser-GMAW hybrid welding molten pool[J].Chinese Journal of Lasers, 2018, 45(10):1002004(in Chinese).
    [11]

    XIE W, FAN C, YANG C, et al. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding[J]. Ultrasonics Sonochemistry, 2016, 29:476-484. doi: 10.1016/j.ultsonch.2015.11.001
    [12]

    ROSTAMIYAN Y, SEIDANLOO A, SOHRABPOOR H, et al. Experimental studies on ultrasonically assisted friction stir spot welding of AA6061[J]. Archives of Civil & Mechanical Engineering, 2015, 15(2):335-346.
    [13]

    JIAN X, XU H, MEEK T T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Materials Letters, 2005, 59(2):190-193.
    [14]

    LIU C, CHEN D, HILL M R, et al. Effects of ultrasonic impact treatment on weld microstructure, hardness, and residual stress[J]. Materials Science & Technology, 2017, 33(12):1-9.
    [15]

    XU H, JIAN X, MEEK T T, et al. Degassing of molten aluminum A356 alloy using ultrasonic vibration[J]. Materials Letters, 2004, 58(29):3669-3673. doi: 10.1016/j.matlet.2004.02.055
    [16]

    LI H X. Study on corrosion resistance of aluminum alloy composite welded Joint by welding process[D]. Changchun: Changchun University of Science and Technology, 2017: 5-10(in Chinese).
    [17]

    LI Y J, WANG J. Principle and application of welding[M]. Beijing:Chemical Industry Press, 2009:18-21(in Chinese).
    [18]

    TUCKER J D, NOLAN T K, MARTIN A J, et al. Effect of travel speed and beam focus on porosity in alloy 690 laser welds[J]. Journal of Metals, 2012, 64(12):1409-1417.
    [19]

    GAO M Zh. Study on interface microstructure of ultrasonic assisted brazing joint of AZ31B magnesium alloy/6063 aluminum alloy[D]. Lanzhou: Lanzhou University of Technology, 2017: 20-25(in Chinese).
    [20]

    KANG J, ZHANG X, WANG S, et al. The comparison of ultrasonic effects in different metal melts[J]. Ultrasonics, 2015, 57:11-17. doi: 10.1016/j.ultras.2014.10.004
    [21]

    XU H, JIAN X, MEEK T T, et al. Degassing of molten aluminum A356 alloy using ultrasonic vibration[J]. Materials Letters, 2004, 58(29):3669-3673. doi: 10.1016/j.matlet.2004.02.055
    [22]

    MA G, YAN S, WU D, et al. Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating[J]. Ceramics International, 2017, 43(13):9622-9629. doi: 10.1016/j.ceramint.2017.04.103
    [23]

    BURKE J E, TURNBULL D. Recrystallization and grain growth[J]. Progress in Metal Physics, 1952, 3(3):220-292.
    [24]

    MA L, SHU G, CHEN F. Study on solidification of metal melt in ultrasonic field[J]. Materials Science and Engineering, 1995(4):2-7.
    [25]

    GE H L. Study on microstructure change and influence mechanism of aluminum alloy with ultrasonic impact welding[D]. Harbin: Harbin Institute of Technology, 2016: 32-47(in Chinese).
  • [1] 谭兵刘红伟马冰陈东高任宝辉明珠马志华 . 铝合金CO2激光电弧复合焊保护气体影响研究. 激光技术, 2012, 36(4): 497-500. doi: 10.3969/j.issn.1001-806.2012.04.015
    [2] 骆红胡伦骥黄树槐刘建华胡席远 . 铝合金的激光焊接. 激光技术, 1998, 22(2): 94-98.
    [3] 王维夫孙凤久王茂才 . 铝合金表面激光熔覆铜基合金涂层研究. 激光技术, 2008, 32(3): 240-243.
    [4] 邹宇峰金湘中何依宁张宏圭杨洪亮 . 填镁改善5052铝合金激光焊接接头机械性能研究. 激光技术, 2013, 37(6): 712-717. doi: 10.7510/jgjs.issn.1001-3806.2013.06.002
    [5] 张继祥刘凤芝高波殷筱依杨泮 . Al-Mg系铝合金脉冲激光焊接性能影响因素分析. 激光技术, 2015, 39(6): 863-868. doi: 10.7510/jgjs.issn.1001-3806.2015.06.028
    [6] 余世文周昆张威王维新刘巨峰叶兵 . 6.0mm厚5183铝合金激光摆动焊接工艺研究. 激光技术, 2018, 42(2): 254-258. doi: 10.7510/jgjs.issn.1001-3806.2018.02.022
    [7] 张宏圭金湘中陈根余张明军邹宇峰 . 光纤激光焊接5052铝合金镁元素烧损研究. 激光技术, 2012, 36(6): 713-718. doi: 10.3969/j.issn.1001-3806.2012.06.001
    [8] 张大文张宏刘佳石岩 . 铝合金连续-脉冲激光焊接工艺对比实验研究. 激光技术, 2012, 36(4): 453-458. doi: 10.3969/j.issn.1001-806.2012.04.006
    [9] 魏鑫磊李春林薛伟张健朱德华曹宇 . 激光标刻铝合金2维码的手机识读特性研究. 激光技术, 2016, 40(5): 633-637. doi: 10.7510/jgjs.issn.1001-3806.2016.05.004
    [10] 王海林黄维玲周卓尤曹红兵 . 铝合金2007的激光焊接. 激光技术, 2003, 27(2): 103-105.
    [11] 范勇王声波吴鸿兴郭大浩戴宇生夏小平 . 航空铝合金材料激光冲击强化实验研究. 激光技术, 2003, 27(4): 273-275.
    [12] 赵文轸 . 铝合金表面激光处理的三种工艺特点. 激光技术, 1997, 21(2): 87-91.
    [13] 范长刚王爱华谢长生 . 铝合金表面激光熔覆的新进展. 激光技术, 1996, 20(6): 366-369.
    [14] 李建敏王春明闫飞胡席远吴圣川张威 . 6005A激光-MIG复合焊接头组织及力学性能研究. 激光技术, 2014, 38(6): 733-737. doi: 10.7510/jgjs.issn.1001-3806.2014.06.003
    [15] 宋新华金湘中袁江张明军宋斌冯斌华 . 激光深熔钎焊车用铝/钢异种金属试验研究. 激光技术, 2014, 38(3): 342-346. doi: 10.7510/jgjs.issn.1001-3806.2014.03.012
    [16] 朱祖昌邱丘 . 铸铝激光熔融处理后的组织与性能. 激光技术, 1996, 20(6): 335-337.
    [17] 严军曾晓雁高明邓业平 . 316L不锈钢激光——钨极惰性气体复合焊接工艺研究. 激光技术, 2007, 31(5): 489-492.
    [18] 李昊黄安国李颉汪永阳李志远 . 激光焊接ZL114A铝合金凝固裂纹研究. 激光技术, 2010, 34(2): 154-156. doi: 10.3969/j.issn.1001-3806.2010.02.003
    [19] 张威叶兵祁小勇王维新刘巨峰 . 6061铝合金激光-MIG复合焊中能量比影响的研究. 激光技术, 2018, 42(4): 500-504. doi: 10.7510/jgjs.issn.1001-3806.2018.04.013
    [20] 王匀范苏湘甘斐王荣茂徐国峰殷苏民 . 3003铝合金激光冲击微挤压成形研究. 激光技术, 2013, 37(6): 820-824. doi: 10.7510/jgjs.issn.1001-3806.2013.06.026
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  493
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 录用日期:  2018-08-30
  • 刊出日期:  2019-05-25

超声波对铝合金激光-电弧复合焊接影响的研究

    通讯作者: 刘佳, liujia@cust.edu.cn
    作者简介: 李忠(1993-), 男, 硕士研究生, 主要从事激光焊接方面的研究
  • 1. 长春理工大学 机电工程学院, 长春 130022
  • 2. 长春海拉车灯有限公司, 长春 130022
  • 3. 普睿玛智能科技有限公司, 苏州 215000

摘要: 为了解决传统铝合金焊接接头气孔数量多、晶粒粗大及力学性能差的问题,以5083-O铝合金为研究对象,进行了超声振动辅助激光-电弧复合焊接试验。研究了超声振动对铝合金焊缝气孔数量、微观组织及抗拉强度的影响,并探讨了超声波在焊接熔池中对气孔排出和组织细化的作用机理。结果表明,超声辅助焊接的焊缝气孔数量显著降低,主要归功于超声空化效应降低了铝合金熔体中的氢浓度,并促进气泡的快速逸出;超声波的空化效应和声流效应改变了熔体的压力、温度以及流动状态,使熔池的结晶条件发生改变,从而通过提高形核率和破碎枝晶细化了焊缝晶粒组织;施加超声振动后的焊缝平均拉伸强度由242.9MPa提高到270MPa,且断裂位置发生在热影响区,主要是因为焊缝区气孔减少和组织细化。此研究对深入理解铝合金焊接过程中缺陷形成机理及提高接头强度是有帮助的。

English Abstract

    • 铝合金具有比强度高、耐腐蚀性能好和易于加工成型等优点,已被广泛应用于航空航天、船舶制造和汽车工业等加工制造领域[1-5]。铝合金的传统焊接方法有许多种,包括激光焊接、电弧焊接和摩擦搅拌焊等[6]。在铝合金厚板材的焊接中,为避免未熔透现象以及获得大的深宽比的焊缝,激光-电弧复合焊接具有不可替代的优势。其中,激光-熔化极惰性气体保护焊(metal inert gas welding,MIG)复合焊接技术是将激光能量与MIG电弧能量耦合在一起的新兴激光特种加工技术,综合了激光焊接与电弧焊接两者的优点,解决了单一热源焊接时的缺点,并实现“1+1>2”的协同效应[7-10]

      关于铝合金激光-电弧复合焊接技术的研究,目前大多仅停留在激光功率、离焦量、电弧电压和光丝距等焊接工艺参量上。这些工艺参量的组合及优化虽然在一定程度上改善了接头性能,但难以突破技术瓶颈,如焊接接头组织粗大和气孔等缺陷。因此,国内外一些研究者试图将外部激励引入焊接过程,如电磁搅拌、超声振动等辅助方法。其中,超声波作为一种廉价且环保的能源,已逐渐参与到焊接领域,包括超声波焊接、超声波辅助焊接等。焊接过程中,超声波在熔体中会产生一系列效应,如空化效应、声流效应、过热效应及谐振效应,这些现象通过改变熔池的温度、压力及过冷度等来影响熔体的凝固行为[11-12]。JIAN等人[13]研究了超声振动对铝合金熔体形核与晶粒长大的影响, 结果表明,超声振动在熔体中产生的空化效应促进了铝合金液相线温度附近熔体的异质形核,从而显著地细化了焊缝组织。LIU等人[14]在进行多道焊的同时利用超声振动对焊缝进行分层冲击处理,研究发现,超声冲击促进了焊缝与熔合线附近等轴晶的形成,并消除了每层焊缝中残余应力,获得了力学性能优良的多道焊焊缝。XU等人[15]进行了铝合金熔体超声振动排气试验,通过对铸锭密度的测量研究了不同处理温度下的超声排气效率,结果表明,熔体温度对超声排气效率影响显著,在溶体温度为700℃~740℃之间的排气效率高于620℃~660℃,而湿度与原始氢浓度对超声排气影响不明显。

      5083-O铝合金是典型的防锈铝合金,尤其在航海领域得到广泛应用,但其劣质的焊接接头性能一直是亟待解决的问题,然而目前国内外对于超声辅助铝合金激光-电弧复合焊接的影响研究非常少,针对这一情况,本文中以5083-O铝合金为研究对象,在前期铝合金激光-MIG复合焊接工艺参量优化的基础上开展超声辅助铝合金对接焊试验。研究超声振动对焊接接头气孔率、微观组织及力学性能的影响。

    • 试验材料选用尺寸为300mm×100mm×10mm的5083-O铝镁系铝合金板,钝边5mm,坡口30°(单边15°),对接间隙1.8mm。焊前用饱和氢氧化钠对铝合金板的焊接区域进行碱洗以去除氧化膜,然后浸入3%HF+7%HCl的混合溶液中,对残留氢氧化钠进行中和,最后用丙酮清洗表面。填充材料选用ER5087焊丝,焊丝直径为∅1.2mm。试验材料和填充焊丝化学成分如表 1所示。

      Table 1.  Chemical composition (mass fraction) of 5083 aluminum alloy and filler wire

      material Si Fe Cu Mn Mg Cr Zr Zn Ti Al
      5083-O 0.0040 0.0040 0.0010 0.004~0.01 0.04~0.049 0.0005~0.0025 0.0025 0.0015 balance
      ER5087 0.00022 0.0015 0.00005 0.009 0.04~0.049 0.00082 balance
    • 激光器采用德国Trumpf公司生产的HL4006D型Nd:YAG激光器,电弧焊接设备采用日本Panasonic YD-350AG2HGE型MIG/MAG焊机,焊接机器人为六轴联动KUKA机器人,激光焊接头与MIG焊枪采用旁轴连接方式。试验中选用型号为CSHJ-1000的超声波发生器,其振动频率为20kHz,振幅为10μm,最大输出功率为1kW。图 1为超声振动设备实物图。图 2为超声波激发原理示意图。

      Figure 1.  Physical diagram of ultrasonic equipment

      Figure 2.  Schematic diagram of ultrasonic principle

      试验中采用电弧引导激光的焊接方式。为保证试验的可行性与稳定性,采取激光焊接头和超声振动头静止,而工件匀速运动的焊接方式。工件通过焊接工作台固定于数控导轨上,超声振动头垂直施加于工件底部,且相对于激光焊接头沿焊接方向前置5mm。超声振动头采用弹性压紧装置固定,减小工件热变形对超声振动头的压力影响,从而使超声振动能量输入更加稳定。在本实验室前期铝合金焊接的试验基础上采用如表 2所示的工艺参量,其中焊接保护气体均采用纯度为99.99%的Ar。图 3为焊接装置实物图。图 4为其示意图。

      Table 2.  Parameters of ultrasonic assisted laser-MIG hybrid welding

      processing parameters value
      laser power P 4kW
      arc current I 220A
      arc voltage U 21.2V
      defocusing distance Δf -2mm
      heat source distance DLA 3mm
      numerical control table movement speed v 0.5m/min
      shielding gas flow rate fg 30L/min
      MIG shielding gas flow rate ft 15L/min

      Figure 3.  Physical diagram of welding device

      Figure 4.  Diagram of ultrasonic assisted laser-arc hybrid welding

    • 在铝合金的焊接中气孔是普遍存在且难以解决的问题。铝合金表面的氧化膜易吸附空气中的水分而形成Al2O3·6H2O,焊接过程中,氧化膜吸附的水和空气中的水蒸气被电离形成H2进入熔池[16]。然而,氢在铝合金固相和液相中的溶解度相差极大,如图 5所示[17]。此外,铝合金导热性能强,熔池的冷却速率(cooling rate,CR)极快,其熔体凝固时间仅有1s左右,因此,大多氢气泡来不及逸出熔池而滞留在焊缝中形成体积较小的冶金气孔。另一方面,在激光-电弧复合焊接过程中,由于等离子体的存在,会对激光产生折射、反射和散射现象,使到达工件的激光能量减少,激光匙孔的稳定性下降,导致激光匙孔会出现周期性坍塌现象,使得部分保护气体和金属蒸汽被卷入熔池底部形成较大的工艺性气孔[18]。铝合金焊缝气孔形貌如图 6所示。

      Figure 5.  Solubility of hydrogen in aluminum alloy

      Figure 6.  Porosity morphology of aluminum alloy weld

      图 7可看出, 超声振动对焊缝整体成形影响并不显著。图 8为对铝合金焊缝进行X射线探伤结果。施加超声振动的铝合金焊缝气孔数量明显减少,且气孔有向焊缝中心汇集的趋势。分析认为,气孔的减少主要是因为超声波在熔体中的空化效应。在超声波的正负压相交替作用下,熔体分子在其平衡位置发生弹性振动,当超声强度大于熔体空化阈值时,熔体分子在超声负压相产生的拉应力作用下脱离其平衡位置而形成空穴,空穴继续长大成为空化泡[19]。在稳态空化阶段,空化泡在超声波的作用下不断膨胀、压缩,空化泡膨胀阶段泡内压强低,使得铝熔体中游离的氢向空化泡内单向扩散,不仅降低了熔体中氢浓度,且空化泡体积进一步增加更易上浮逸出熔池[20-21]

      Figure 7.  Weld macroscopic morphology

      Figure 8.  X-ray inspection photos of welds

    • 焊缝的微观组织结构是决定其力学性能最重要的指标之一,晶粒越均匀细小,焊缝整体力学性能越好。然而在传统铝合金的激光-电弧复合焊接中,焊缝组织以粗大的柱状晶为主,其机械性能和耐腐蚀性能特别差,因此如何改善焊缝区微观组织非常重要。图 9为铝合金焊缝的横截面电弧作用区微观组织形貌。图 10为铝合金焊缝的横截面激光作用区微观组织形貌。由图 9图 10可发现,超声振动明显细化了电弧作用区和激光作用区组织,且气孔数量明显减少。电弧作用区实际是激光与电弧的共同作用区域,接收的能量更高,其熔化区域大于激光作用区的熔化区域,因此其冷却速率较小,过冷度相对较小,晶粒生长时间增加,使电弧作用区的平均晶粒尺寸大于激光作用区的平均晶粒尺寸。无超声辅助的焊缝激光作用区晶粒沿熔合线向焊缝中心生长的趋势非常明显,且以粗大的柱状晶为主,而施加超声后焊缝组织以细小的等轴晶为主。关于超声振动细化焊缝晶粒的机理主要包括超声诱导形核和超声破碎晶粒。

      Figure 9.  Microstructure of arc action zone of weld

      Figure 10.  Microstructure of laser action zone of weld

      空化效应产生的空化泡在超声波的正负压交替作用下经历长大、压缩和崩溃过程,图 11为空化泡动态过程的示意图。

      Figure 11.  Schematic diagram of the dynamic process of cavitation bubbles

      空化泡崩溃时会在极小的空间内产生瞬间高温梯度和高压梯度,初生枝晶在高温高压作用下会被打断,断裂游离的枝晶碎片作为新的形核质点开始另一个晶粒的长大过程。此外,空化泡长大过程会吸收周围熔体的热能,产生局部过冷,从而可提高形核率[22]。另一方面,超声波以铝熔体为介质传播时,会因熔体粘度和摩擦力损耗一部分声波能量,导致在熔体中存在声压梯度。当声压梯度足够大时会促使熔体沿声波能量衰减方向发生流动现象,形成对流或涡流(声流现象)。这种声流现象会降低熔体的温度梯度,有效抑制柱状晶的形成和生长,且会促进溶质元素均匀分布,改善焊缝的元素偏析。

      在空化效应和声流效应的作用下,熔体对异质形核粒子的润湿性得到增强。采用如下式所示的Fisher-Turnbull形核理论模型来计算异质形核率[23]:

      $ u_{\mathrm{s}}=N_{\mathrm{a}} \exp \left[-\frac{4 {\rm{ \mathsf{ π} }} \sigma^{3} T_{0}^{2} V_{\mathrm{s}}^{2}}{3 \Delta H^{2} \Delta T^{2} k_{\mathrm{B}} T}(2+\cos \theta)(1-\cos \theta)^{2}\right] $

      (1)

      式中,us为异质形核率,σ为界面能,θ为润湿角,ΔT为过冷度,T为绝对温度,ΔH为熔化焓,kB为玻尔兹曼常数,Na为熔体单位体积内的形核位置数,Vs为固相摩尔体积。由此可见,润湿角越小,过冷度越大,异质形核率越高,超声可通过提高对第二相粒子的润湿性以及提高过冷度来增加形核率。

      此外,在空化效应产生的高温、高压作用下,熔体的熔点会在一定范围内发生变化,根据克劳修斯-克拉珀龙方程可得到下式[24]:

      $ \frac{\Delta T_{\mathrm{m}}}{\Delta p}=T \frac{\Delta V}{\Delta H} $

      (2)

      式中,ΔTm为熔体熔点的改变量,Δp为熔体中压力变化,ΔV为铝合金熔化过程中的体积变量。由此可见,在超声空化效应产生的高压作用下,熔体熔点会得到提高,而靠近母材熔合线附近的熔体温度相对较低,因此两者的温度差提供了异质形核所需的过冷度,使其形核率得到提高。

    • 图 12所示为普通焊接与超声辅助焊接接头拉伸强度。普通焊接接头平均抗拉强度为242.9MPa,超声振动辅助焊接接头平均抗拉强度达到270MPa,达到母材强度的90%以上。无超声辅助焊接接头拉伸断裂位置均在焊缝区,而施加超声波辅助后的接头断裂位置在热影响区,如图 13所示。如前所述,超声波在熔池中产生的一系列效应,显著减少焊缝区气孔数量并细化焊缝晶粒,使焊缝的整体力学性能高于热影响区,因此施加超声振动后接头拉伸断裂位置发生在热影响区。事实上,非热处理强化的5083-O铝合金在焊接热循环作用下,其冷作硬化效应会降低或消除,故其热影响区会出现软化现象[25],导致即使接头强度提高,但断裂位置仍发生在热影响区。

      Figure 12.  Welded joint tensile strength

      Figure 13.  Welded joint fracture position

      图 14为在扫描电镜下的拉伸断口形貌照片。未施加超声的拉伸断裂方式为韧性断裂与准解理断裂的混合断裂方式,韧窝较浅,且大小不一致,部分韧窝的生长具有明显的方向性,这是撕裂韧窝的特征。主要是因为焊缝在受到足够大的拉伸外力作用时,位错环脱离原来的平衡位置形成空穴,空穴继续长大形成韧窝。但由于焊缝中大量气孔的存在造成应力集中,使得韧窝长大过程中具有明显的方向性。施加超声后的拉伸断裂方式为典型的韧性断裂,韧窝大小、生长均匀一致,且具有明显的深度,这是其抗拉力学性能较好的主要原因。

      Figure 14.  Tensile fracture morphology

    • 本文中研究了超声振动对铝合金激光-MIG复合焊接的影响作用。

      (1) 通过对焊缝X射线探伤结果表明,超声波对焊接熔池具有除气效果,显著降低了焊缝的气孔数量。

      (2) 超声波在铝合金熔体中的空化效应和声流效应具有提高形核率和破碎枝晶的效果,施加超声后的焊缝组织显著细化。

      (3) 施加超声后的焊缝由于气孔减少和组织细化,其抗拉性能高于热影响区,使得拉伸断裂位置发生在热影响区,且其平均拉伸强度可达到270MPa;拉伸断口形貌显示未施加超声的断裂方式为混合断裂,施加超声后为典型的韧性断裂方式。

参考文献 (25)

目录

    /

    返回文章
    返回